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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center {JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed for JSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to

conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest

fo its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Hurmnan Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common rescarch interests, to provide add!-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with fts sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.
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RICIS Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. David Eichmann of West Virginia
University. Dr. E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information
Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between
NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
technical monitor for this activity was Ernest M. Fridge, IIl of the Information
Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.
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Design of a Lattice~-Based Faceted Classification System

David Eichmann

John Atkins

Dept. of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506

Abstract We describe a software reuse architecture
supporting component retrieval by facet classes. The
faccts arc organized into a lattice of facet value scts and
facet n-tuples. The query mechanism supports both pre-
cise retrieval and flexible browsing.

L. Introduction

There are many obstacles in the path to development
of a practical and useful software reuse environment.
Retrieval of “suitable” reuse candidates from a collection
of possibly thousands of components is a particularly
significant obstacle. We describe the design of a compo-
nent classification scheme and its associated query
mechanism. The classification scheme is based upon a
lattice of facet values and facet tuples. The query mecha-
nism uses type inference rules to locate and retrieve those
components whose classifications in the lattice are sub-
types of the query specification.

1 flw g

Reuse has long been an accepted principle in many
scientific disciplines. Engineers make design decisions
on the availability of components that facilitate product
development, biologists use established laboratory instru-
ments and chemists use standardized measuring devices
to record experimental results. It would be unthinkable
for an engineer to “design and develop” the transistor
every time that a transistor is required in an electrical
instrument. Computer scientists, however, are guilty of a
comparable practice in their discipline: software reuse is
not widely practiced in the computer science field. Gen-
erally, the reasons are:

1. Development standards have not been established
for software; '

This work was supportcd in part by a grant from
MountainNet Inc. as part of the AdaNet project under
NASA coopcrative agreement NCC9-16.

2. Thereis a pervasive belief that if it is “not developed
here”, it can't be used by “us™;

3. Softwarc is all 100 often developed with respect to a
specific requirement with no consideration given to
reuse in other environments;

4. Many languages encourage constructs that are not
conducive 1o reuse;

5. Software Engineering principles are not widely prac-
liced and consequently, requirements and design
documents often are not available with the code; and

6. No widely accepted methodology has been devel-
opced to facilitate the identification and access of
rcusable components.

Regardless of the reasons for not developing soft-
ware for eventual reuse, the spiraling cost of new soft-
ware development is mandating an increased interest in
software reusc. It has been estimated that in 1990 alone,
the output of source code will be 15.3 billion lines of
code [11]. With the minimal effort to reuse existing soft-
ware, it is natural to ask what percentage of this enor-
mous number of lines of code will represent duplication
of effort. It has been estimated that only 30 to 40% of
this code will represent novel applications while 60 to
70% of the code will apply to generic computer tasks
such as data entry, storage, sorting, searching, etc.

Although there are no definitive answers as yet to
the software reuse problem, there is substantial ongoing
research on the problem. One area of research is to iden-
tify characteristics of sofiware components that enhance
the reuse potential of the component in terms of its bind-
ings to other modules [3]. Another area of research is to
identify techniques that can be used to translate a soft-
ware component that has marginal reuse potential to one
that can be casily incorporalted into a larger system. A
third rescarch arca relative to softwarc reuse that has
been extensively studied is that of identifying metrics
that measure softwarc complexity. An example of this is

Second International Conference on Software
Engineering and Knowledge Engineering, Skokie, IL,
June 21-23, 1990, pages 90-97.
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McCabe’s Complexity metric. A very recent area of re-
search in software reuse is that of the problem of classi-
fying software in order to identify and access the soft-
ware [4], [12]. The most promising classification method
for software reuse is the Faceted Classification System.
This methodology has been studied extensively by
Prieto-Diaz and forms the basis for the methodology
presented in this paper.

ifi

The faceted classification methodology, as studied
by Pricto-Diaz, begins by using Domain Analysis “10
derive faceted classification schemes of domain specific
objects” [13]. This process relies on a library notion
known as Literary Warrant. Literary Warrant collects a
representative sample of titles which are to be classified
and extracts descriptive terms 10 serve as a grouping
mechanism for the titles. From this process, the classifier
not only derives terms for grouping but also identifics a
vocabulary that serves as values within the groups.

From the software perspective, the groupings or fac-
ets become a taxonomy for the software. Using Literary
Warrant, Pricto-Diaz has identified six facets that can be
used as a taxonomy [14]. These facets are: Function, Ob-

F ]

ject, Medium, System Type, Functional Area and Setting.

Every software component is classified by assigning a
value for each facet for that component. For example, a
software component in a Relational Database Manage-
ment System that parses expressions might be classified
with the tuple
(parse, expression, stack, interpreter, DEMS, ).
Thus, the Function facet value for this component is
“parsc”, the Object facet value is “expression”, eic. Note
that no value has been assigned for the Setting facet as
“this software component does not seem to have an appro-
priate value for the Setting facet.
The software reuser locates software components in
a faceted reuse system by specifying facet values that are
descriptive of the software desired. For example, if we
are using Prieto-Diaz's facets, suppose that we wish to
find a software component to format text. We might
query the system by constructing the tuple
(format, text, file, file handler, word processor, *).
Note that the asterisk for the value for the Setting facet
acts as a wild card in the query which indicates that there
is no constraint on that facet. If the query results in one
or more “hits”, then the reuser chooses from the hits the
particular softwarc component that best fits the desired
need. The problem arises if no hits are obtained or if the
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software that is identificd is not appropriate to the needs
of the reuser. One solution is o weaken the query by
relaxing one or more constraints by replacing a facet
value with a wild card. For.example, if the Functional
Area facet has the least significance to the required nesd,
the reuser could again pose the query with the tuple
(format, text, file, file handler, *, *).
This process of weakening the query continues until a
suitable component is retrieved.

An altemnative method to continue the search after a=d
initial query is known as the method of “concepmal
closencss.” In this method, pairs of facet values for the —
same facet have numeric values associated with them
that in a sense measurcs their “degree of sameness.” For
example, the two facet values “delete” and “remove”
would be very close in meaning and hence would have a
metric value close to O indicating their semantic close-
ness. However, the two values “add” and “format” for
Function have litde in common and hence would have a
closeness value nearer to 1. In this method, the system
assumes the responsibility for continued searches by
modifying thc query by replacing facet values with val-
ues that are “close” in meaning as determined by the ==
closeness metric. For example, if the facet vaiue “editor g
is closer to “word processor” in terms of the metric than
any other valuc in any facet, then the sysiem poses the
query with the modified tuple

(format, text, file, file handler, editor, *)
and continucs in this manner until a hit is obtained.

Although this appcars 1o be a reasonable solution 1o
the problem of continucd searches, the difficulty lies in
the need o assign mcaningful closeness values to pairs E
facet values. With a large collection of values, thisisa ™
daunting task. However, one solution is suggested by
adapting the work of Kruskal [8] to the conceptual close _
ness problem. In this method, a metric is assigned ©
pairs of values based on user acceptance of modified
queries. The method requires the use of a two dimen-
sional matrix for each facet indexed by the facet values
themselves. For example, if an original query tuple con-,_»
sisting of "

(format, text, file, file handler, word processor, °)
failed to achieve a hit and the user later accepted a com- =
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ponent with the query tuple -
(format, text, file, file handler, editor, *},  _

the matrix corresponding to the Functional Area facet

would have onc added to the two matrix cells corre-

sponding to the entrics for “word processor” and “edi- =
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tor”. Now if N is half of the total of the cell values in the
matrix, then the distance between *“word processor” and
“editor” is defined to be 1 - (cell value)/N where the cell
value is the value in either of the entries corresponding to
the pair “word processor” and “editor”. It is clcar that
this method requires a large and patient user group in
order to establish viable metric values.

13, Latiices

The faceted classification model that we shall de-
scribe in the next section is based on the mathematical
notion of a lattice. The definition of a lattice requires the
concept of a partial ordering on a set. Thus, a partial or-
dering < on a set A is a relation defined on A that satis-
fies three conditions, namely:

a. Reflexive: forall xin A, x <x;

b. Antisymmelric: forall x,yin A,ifx<yandy <x,
thenx=y;

¢. Transitive: forallx,yandzin A,ifx<yandy<z,

then x < z.

For example, the arithmetic comparison “less than or
equal” is a partial ordering on the Natural numbers. An-
other example is the subset rclation defincd on the power
set of a set. It should be noted that a partial ordering on a
set does not guarantee that any two objects in the set can
be compared using the partial ordering. For example, two
arbitrary elements in the power set are not comparable in
the sense that one need be a subset of the other.

A lattice is a set A on which is defined two binary
opcrations, A (meet) and v (join), which satisfy the fol-
lowing:

a. Idempotent: foranyin A, xAx=xandxvx=x;

b. Commutative: forany xandyin A,XAy=yAX
andxvy=yvx;

c. Associative: forany x,yandzin A, xA(yAz)=(x

AY)azandxv(yv z2)=xvy)vz
d. Absorption Law: forany x andyin A, if x <y, then

xvy=yandxAay=x.

Addiuonally, if forany x,yand zin A, xA(yvz) =
xay)v(xaz)andxv(yaZ)=(xvy)a(xvz),we
say that the lattice is distributive. For example, the power
set with intersection as the meet and union as the join
forms a distributive lattice using the subset partial order.

Let < be a partial ordering on a set A. If X is a subsct
of A, we say that an element a in A is a lower bound of X
if a < x forevery x in X. A Greatest Lower Bound (GLB)
of X is a lower bound b of X with the property thatif ais
any other lower bound of X, thena <b. Itis clcar thatif a
GLB exists for a subset X of A, then it must be unique.
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For example, any subsct of elements in the power set has
a GLB consisting of the intersection of all elements in
the subset In a lattice, any two elements have a GLB
which is just the mect of the two elements, i.e. if xand y
areinalattice A, thenxay<xandxAy<yandifzis
any lowerbound of bothx and y, thenz<x A y.

There is a dual 10 lower bounds which is the notion
of upper bounds. An clement a is an upper bound for a
set X if x < a for all x in X. A Least Upper Bound (LUB)
of a set X is an upper bound b such that if a is any other
upper bound, then b < a. For the example of the power
set, a LUB for a set X is the union of all the elements in
the subset. In a lattice, any two elements also have a Jeast
upper bound which is just the join of the two elements.
Thus, forany twoclementsxandyin A, x<xvyandy
< x vy and if z is any upper bound of both x and y, then
XVy<z.

We note that if A is a set with a partial ordzring <
such that any two elements have a GLB and a LUB, then
the set is a lattice where the mest of any two elements is
the GLB of the clements and the join of any two ele-
ments is just the LUB of the clements.

1.4, Subtvpes and Inheritance

The popularity of the Smalltalk programming lan-
guage {9], with its object orientation and buili-in type
inheritance, has resulted in a flurry of research in object-
oriented database systems. An object—oriented database
sysiem is onc that is organized around objects and which
communicates through message—passing, Qperations
(termed mcthods) are associated with each objzctina
datwabasc; somc of these operations are bound 1o specific
types of messagcs {or that objecL Most message—passing
systems are not strongly typed, but rather perform run-
time type checking. This is done primarily to support
rapid prototyping of applications. Deferring the binding
of an object or message to a type until run-time reduces
the amount of effort needed to begin exercising an appli-
cation, but it also requires a run-time system that can
handle the errors that may arise.

The object classes in an object—oriented database are
organized into a partial ordering. Object classes inherit
attributes and mcthods from their ancestors in the order-
ing. Single inheritance schemes restrict a given object
class to at most one immediate ancestor in the partial
ordering. Multiple inheritance schemes allow a given
object class to have any number of immediate ancestors
in'the partal ordering. Cardelli {5] formalizes some of
the semantics of multiple inheritance.



Object—oricnted database systems have a number of
design goals, some concerning typing, but others con-
cerning peripheral issues (such as rapid prototyping).
The type semantics of object—oriented systems (including
inheritance and subtyping) is present in other systems
which are not based upon message~passing (e.g., Mor-
pheus [7], Galileo [2]). Such systems are strongly typed,
and hence, as Cardelli and Wegner [6] argue, can pro-
duce more efficient and reliable applications.

Horn [10] introduces the notion of conformance,
allowing one type instance to be eated as if it were an
instance of another type. In a limited sense, this is what
happens with inheritance, but conformance is more gen-
eral. Inheritance requires that this treatment only be al-
lowed when moving up the type hierarchy or lattice.
Inhcritance uses a pardal ordering of types (by subtype),
plus an implicit definition of existence dependencies be-

* tween a given type and its ancestors. Conformance can
hold for arbitrary types, independent of any type ordering

scheme. Such a notion is clearly superior to hierarchies T

or lattices for type~related query languages, where inter- =

mediate results (derived from existing types, but not part -

of the database schema) need 0 be manipulated. Fatho {'} B
Inheritance-based systems are, in some sense, navi- ! ! .

gational. A user querying an object—oriented database ' ' w

must be aware of the inheritance structure of that specific Fac '

. . acet tuple .
database, just as a uscr querying a nctwork database must —
be aware of database structure. Because of their non- \/EJ -
navigational characteristics conformance~based models 1
promisc to gain prominence ovcer inheritance-based mod- . . —
els, just as rclational models have over network modcls. Figure 1. The reuse type lattice -
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Figure 2. The Sublattice of Facet Sets o
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- Any value conforms to the universal type. At the botig

2, The Reuse Type Lattice”
Figure 1 shows the general structure of the reuse
type lattice. Atthetopis | , the special universal type__

1IN

e

is L, the void type. These two special types ensure that
any two types in the lattice have a least upper bound an "+
a greatest lower bound, respectively. Between the uni-—Z
versal and void types appear the upper and lower bounds
for the two type constructors facet and tuple. Facetp
characterizes the notion of the empty facet type; it con-<2
tains no values, but is still a facet. Likewise, Facet char-
acterizes the notion of the set of all possible facet valus—
The dotted line between them indicates that an arbitrary~
number of types may appear here in the lattice. For ex-
ample, figure 2 shows the sublattice for facet sets for tr -
examples in scction 1.2,

The tuple sublattice has a similar structure. At the
top is the empty tuple type {}, characterizing a tuple w2

=N



[N

RIS ERIN & I &

11!

0’

»
'y

1

no facets. At the botiom is tuple, the tuple t;'pe with all
possible facets.

2.1, Facels vs, Facet Valuye Sets

Traditional retrieval of individual facet values relies
upon maximal conjunction of boolean terms for retrieval
of matches on all facets and maximal disjunction of
boolean terms for matches on any facet of an expression.
In order to fit the notion of facet into the lype lattice, we
look at sets of facets. A set of facets corresponds to a
conjunction on all of the facets comprising the set. Each
set occupies a unique position in the type lattice. We
handle disjunction by allowing a given component to
occupy multiple lattice positions. Matching occurs on
any of the positions, providing the same semantics as
disjunction,.

Facet values are equivalent to enumeration values.
We attach no particular connotation within the type sys-
tem to a particular facet value. Values are bound to some
semantic concept in the problem domain.

The subset relation is our partial order. The least
value of this portion of the lattice is the set of all facet
values from all facets in the problem domain, denoted by
the disunguished name Facet. The greatest value of this
portion of the lattice is the empty set, denoted by the dis-
tinguished name Faceto. The union operator generates
the greatest lower bound. The intersection operator gen-
erates the least upper bound.

Type Inference Ryle
" We begin with a bricf remark conceming notation.,
In the inference rules that follow, the symbol A repre-
sents an existing set of assumptions. A always contains

~ the type information generated by the database schema

which implements the repository. Itis occasionally nec-
essary to extend the set of assumptions with some addi-
tonal information. A.x denotes the set of éssumpt.ions
extended with the factx, A" x states that given a set of
assumptions A, x can be inferred. Inferences above the
horizontal line act as premises for the conclusions, the
infercnces below the horizontal line. An expression is
well-typed if a type for the expression can be deduced
using the available inference rules, otherwise it is ill—
typed.

1. Domain Interval in

We adapt the notion of a domain interval [7) to for-
malize our notion of facet value sets. In [7] a subtype
was smaller than its supertype; here the reverse is true, a
subtype is a larger collection of values than its supertype.
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A domain interval is a type qualification that explic-
itly denotes the valid subrange(s) for a base type. As-
sume that t is a base type ordered by < (the ordering may
be arbitrary). A domain that is (inclusively) delimited by
two values, a and b, is denoted t,..w. A non-inclusive
lower bound is denoted a* and a non-inclusive upper
bound is denoted by b-. Intervals made up of more than a
single continuous value range are denoted by a set of
ranges, for example, U,...,c...4 o denotes the interval that
includes the subinterval a through b inclusive, the subin-
terval ¢ through d inclusive, and the singleton valye e,
The singleton range e is equivalent to ¢...e. When we
use such notation we intend thata <b and ¢ < d, but not
necessarily thatb< c ord S e. An empty pair of brack-
ets, 1y, denotes an empty interval, i.e., one which con-
tains no clements. In our particular application, the base
types are finite sets of enumeration (facet) values.

Premises concerning membership of interval bound-
ary valucs (c.g., m and n in (1.1) and (1.2)) are assumed
to be part of the assumptions, and will not be explicitly
mentioned after this. Rule (1.1) provides for subtyping a

Altmet

Ablnet

Atm<n
Abtg [(m...n)

(1.1)

subrange of some type t; (1.2) does the same for two sub-
Abtmet
Atm'et
AfFnet
Atn' et (1.2)
AFm'Sm<n<n’
AFtey. 0y S tm. n)

ranges of some type t. Rule (1.3) extends subtyping to
A k I(ml...m) $ t(m;'...m')

(1.3)

Al Ymi...nyy coamin; ) 3 Ymy'o.ny's om0

AFtm .0 ) Ym0

domain intervals, where each subinterval in the subtype
is a subtype of some interval in the supertype.
The following rules are used to combine ranges in
domain intervals. In rule (1.4), two ranges in an interval
Alx: i{....a..hb...c....)

AEXIt ae.)

(14)

that share a common endpoint can be combined into a
single range. This 4can also be donc when one end point
is inclusive and the other is exclusive (rules (1.5) and



(1.6)). Overlapping ranges arc merged into a single

AFX:it . a.b.b..c..
(v b b, (1.5)
AFX:It,a.c..)
AFx:te * '
(..,a.hb'..e..) 1.6)

AFX:it  a.c..)
range that uses the minimum of the two lower bounds as
the new lower bound and the maximum of the two upper
bounds as the new upper bound in rules (1.7) and (1.8).

AFx:t(.,a.cb.4..)
Alac<b<c<d

(1.7)
AbX:It(. 2.4, )
AFXIt adbe,..)
AFta g3 tp.o) (1.8)

AFX:it(. . a.d..)

The next two inference rules deal with unary domain
values. And the last two deal with complete intervals.

AbXite. . a..)

AP Xt a.a.) (1.9)
Akx: na.a..)
Ab Xt . a.) (1.10)
AFx:t
Al Xl =) (1.11)
AFx: cens .99, ...
Koo, ) (1.12)
AFx:t

In order to establish the type of the result of an op-
eration such as union, some notion of domain interval
union is nesded. If M and N arc two intervals over the
same type, then M U N is constructed by merging the
two sets of ranges making up the intervals, and using the
domain inference rules described above to reduce the
result.

Abx:ymouny

AbXx:itMN

(1.13)

In a similar fashion, for two intervals M and N over
the same type, their intersection, M N\ N, can be con-
structed by selecting only those ranges which are com-
mon to both domain intervals. The domain inference
rules are used to decompose the given ranges into sets of
disjoint ranges and common ranges. The set of common
ranges makes up the intersection interval.

Fmy <n,
AP Umem)A (em) 1 = Loy (114
Abm,<n,<my<n
At Wm...m) A (ne e ). MY = H(n, .o ) M) (1.15)

AFm,€n,Snps<myg
A FU(mm) o (naeem), MY= Yoy ) M)

3.2, Tuple Subtvping

This collection of inference rules explicidy types th
tuples that classify components. We view atupleriot
of type record, (1., ..., .}. The type t must be a facet
type. The empty tuple (i.e., the tuple containing no fac- _
ets) is of type (], the tuple type with no components.
The order in which types appear is not arbitrary, since
position is used 10 distinguish facets.

Inference rules (2.1) and (2.2) allow for the defini=
ton of a tuple and the extraction of an attribute from a
tuple. If &, through e, are type expressions of type t,

(11

in T TR

Tl

Alre=t; §
Alte,=t, ( l’
A@=(en...eq))Fr:{ty,...,ty) &

through t, respectively, then the tuple constructed from
them will be of the type resulting from the record con- o
structor ‘(] applied to those types. We use type expres-
sions o allow construction of attribute types without
requiring the carlicr definition of all the types needed. -
Note that the same syntax is used 1o denote both the defi-
nition of the tuple and its rype. If auribute iin tpleris_,
of type t then the result type for the component extraciS
riist

lﬂ'llll\

AFr:{ti...ta}
AFl<i<n
Atbri:
New luplc lypcs are consuucted from CXISU.ng tuple
types using the tuple constructor *&’ which accepts two
tuple types and returns a tuple type containing all compr

S

—~
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o
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nents of both argument types. =
AFTy:{ty ..., ty] =

AFTz. [tm],...,tn) .:T
Atl<mc<n Q3™
ArT&Tyr={t1,..., 1} =

- 1‘2‘7

Rules (2.1) and (2.2) give the type semantics for
construction of tuples from attributes and for extraction ™=
of an attribute from a wple. Rule (2.4) characterizes thé=d
notion of subtype between two tuples: One tuple is a
subtype of-another if it has all of the auributes of the
other (attributes common to both tuple types must be of
the same type in both wple types), and possibly some
additional attributes. This may sccm contrary to the in-
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AFt
Alt,
: (2.4)
Att,
Atl<mc<n
AF{tytm st $ (1,00, t)
tuitive notion of subtype being a restriction of a type.
Consider, however, that an instance of a subtype must be
able to be used as an instance of its supertype, and thus
must contain all of the supertype’s attributes.
Rule (2.5) exiends record subtyping 10 handle the
ArFl1<m<n
ARty

: (2.5)
Art'nstg

APt Umy e tad £ty oo, t)
situation where a component of the subtype is a subtype
of the corresponding component in the supertype. Infer-
ence rule (2.4) required that the corresponding attributes
be of the same type. Rule (2.5) generalizes (2.4) by deal-
ing with subtyping of the attributes in addition to the re-
spective record types.

4, Ouervine the Rennsitorv

The repository is partitioned by structural similarity
(package, function, etc.). Each partition is associated
with a set of facets which characterize and classify the
members of the partition. The particular facets and the
number of facets associated with a partition varies as
needed to adequately characterize it. A given facet may
be unique 10 a partition, or it may be shared by many
partitions. The function facet from section 1.2, is a good
example of a facet likely 1o be shared by a majority of
partitions in the repository.

Each partition instance has one or more lattice verti-
ces that correspond to the sets of section 2.1. There is
always the primary lattice vertex corresponding to the
tuple of facet value sets characterizing this component as
a member of the partition. Additionally, there may be
zero or more secondary lattice vertices corresponding to
alternative characterizations of the component or charac-

terizations of subcomponents contained within this com-
ponent.

4.1, Repository Structure

Two persistent storage arcas comprise the actual
repository: a sct of text files, and a sct of database rela-
uons. The text files contain the body of thc components

themselves, or descriptions of them (in the case of a
commercial product described in a local repository). The
database relations store the lattice vertices.

Each database rclation corresponds to the lattice ver-
tex characterizing a particular repository partition. The
type of the relation is then the type of the partition, which
is the least upper bound of all the tuple types of the com-
ponent vertices comprising the partition. Efficient algo-
rithms for lattice operations such as LUB are described
in [1]. .

There is also a relation made up of facet value/syno-
nym pairs. This relation is described in section 4.2. Ad-
ditional relations may also be present if there are aliema-
live characterizations or subcomponents characteriza-
tions not cquivalent o some primary partition characteri-
zation.
42 erv Evalyation
A query is‘a boolean expression containing predi-
cates and the operators and, or, and not. A predicate is
simply a constant of type tuple. When a user issues a -
query, the query cvaluator first treats all of the facat val-
ues in the query as synonyms and replaces them with
actual facet values from the value/synonym relation. For
example, “database,” “databases,” “data base,” and “data
bases” might all be replaced with “database.” The evalu-
ator then locates all of the relations in the database whose
type conforms to some predicate of the query using the
inference rules of seetion 3. Specific wples which con-
form to some predicatc are then retrieved from the con-
forming relations (once more using the infcrence rules).
The result is then a set of component refercnces, which
can be optionally retricved from the text storage area.

4 wei ey

Treating a query as an editable entity in the user in-
terface provides a straightforward browsing tool. For
example, attaching facets to a query comprised of a sin-
gle wple makes the query less general. Fewer and fewer
partitions conform to the tuple type. Specifying exacty
those facets found in a given partition restricts retrieval
to only that partition. Over—qualification results in
emply retrieval.

Removing facets from the query tuple makes the
query in turm more general, Specifying an empty tuple

. results in all partitions of the repository conforming 1o

the type of the query tuple (all record Lypes arc subtypes
of the cmpty record {)).



n¢lusion

The reuse architecture described here uses the
proven method of faceted classification as a starting
point for a retrieval mechanism providing both precise
characterization of components and flexible specification
of queries. Its simple user interface encapsulates a data
model founded in formal lattice and type theory.
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tant o the success and utility of a user interface incorpo-
rating conceptual closeness.

2.3 Lattice-Based F 1 Classificati
Eichmann and Atkins [6) described an approach to fac-
eted classification that focused upon a structural frame-
work (type lattices) as an alternative to explicit close-
ness weights. Each component possessed one or more
tuples characterizing it, each comprised of 2 non-empty
set of facet values. Users posed queries as tples, and
reuse candidates were retrieved based upon their con-
formance to the query tuple.

2.2. Type Signatures

An algebraic specification contains both a syntactic
characterization of a component (the signature) and a
semantic characlerization of a component (the axioms).
Algebraic specifications therefore are aptly suited as
formal descriptions of software components.

Traditional efforts in reuse concentrated on the struc-
tural interfaces between components (1, 2), and hence
solely on the signature portion of the specification. This
proved less than adequate for component discrimina-
tion, in the face of numerous candidate components, all
with the same interface, and directly prompied the work
in faceted classification described above.

2.3. Type Inference

Recent research in programming language has resulted
in a number of languages that are strongly typed, and
yet, are flexible and remarkable expressive, (e.g., ML
[13]). Such languages rely hcavx]y on inferential
mechanisms to ensure safe computation [5, 12). The
concept of conformance is particularly relevant to soft-

ware repository query mechanisms {11]. Conformance
allows one type instance to be treated as if it were an in-
stance of another type, and can hold for arbitrary types,
regardless of the type ordering scheme (e.g., inheri-
tance).

Type inference notation organizes around a set of infer-
ence rules, comprised of sets of premises and conclu-
sions, separated by a horizontal line. The symbol A rep-
resents an existing set of assumptions. A always con-
tains the type information generated by the database
schema implementing the repository. A.x denotes the
set of assumptions extended with some fact x. A } x
states that given a set of assumptions A, and the cur-
renty defined set of inference rules, x can be inferred,
An expression is well-typed if a type for the expression
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* can be deduced using the avaxlable inference rules, oth-

erwise it is ill4yped.

3. A Hybrid Approach

The approach advocated here combines the semantic
flexibility of faceted classification with the structural
formality of type signatures. We accomplish this
through the incorporation of function and abstract data
type (ADT) definitions into the type lattice of [6).

3.1. The Type Lattice

As shown in figure 1, there are four principle sublattices
comprising the complete type lattice, corresponding 10
the types generated by facet sets, tuples, functions and
ADTs. In addition, the universal type, T, and the void
type, L, ensure that a least upper bound and a greatest
lower bound, respectively, exist for any two types in the
lattice. The usual buili-in types (e.g., integers, strings,
etc.) are not shown, in order to simplify the presenta-
tion. In principle, they can be specified as ADTs if
needed. '

T

Facet, 1 T Je g (}

1 L) ] I
" ' ¥ 1

Facet T- ADT tuple

L
Figwe 1,

Facely characterizes the empty generic facet type; it
contains no values, but is stll a facet. Likewise, Facet
characterizes the set of all possible facet values. The
dotted line xndxcatcs an arbm'ary numbcr of intermedi-

~aie types.

The tuple sublattice has a similar structure. Atthetopis
the empty tuple type, ], characterizing a type with no
components. Atthe bottom is Tuple, the tuple type with
all possnblc components

' Funcuon types are bounded above by l1- T the func-

tion type with a void domain and universal range, and
are bounded below by T — L, the function type with a
universal domain and void range.
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ADT types are bounded above by 3¢.€, the abstract type
denoting a a hidden type, €, with no information or op-
erations available, and are bounded below by ADT, the
type denoting all possible types with all possible opera-
tions. .

3.2. Inference Rules

3.3, Facets

As in [6), we characterize facets as the inverse of our
usual notion of interval subtypes; a facet subtype de-
notes a larger collection of facet values than does its su-
pertype. Inference rule (1) formalizes this for a com-
plete facet

Altme1t

Atnet

Arm<n (1)
Al'lfl(m,n)

Inference rule (2) does likewise for two singleton inter-
vals, and inference rule (3) for two arbitrary collections
of intervals.

Atmet

Atm'et

Alnet

Atn et @
Atm'sm<n<n’

At ) € U

At l(.-.u...nl)f t(ml'...m')

A bl n ¥l ) @

At Uimy..ny,.um .. )S ‘(mx'...m'....,m.',..n,)

A number of inference rules no presented here address
the reduction and manipulation of intervals [6].

3.3.L Tuples

We view atuplertobe of type record, (a1 : i, ..., a0: W},
whereattributeaiisoftypet. Weassumethattissomefacet,
function,orADTtype.Sinceattributesarelabeled compo-
nentsmayappearinanyorder,andtwotypesareassumedio
beequivalentiftheyonlydifferintheorderoftheirrespec-
tive attributes.

Inference rule (4) characterizes subtyping for tuples.
Informally, one tuple type is a subtype of another if it
has all of the attributes of the other (and possible more),
and for those common attributes, the type of a given at-
tribute in the tuple subtype must be a subtype of that at-
ribute’s type in the tuple supertype.
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Atl<m<n
A}"l’]ftl

A Ft'm < tm “)
A t [il . [’1, vauy im : l’m. vy in : tn]
5 {i : ll, veuny lm: tm]
Inference rules (5) and (6) support definition of tuple

constants and extraction of an attribute value, respec-
tively.

A'|'e|=tl

}( ten=1t, (5)
A-(r = (il = clo ey iﬂ= eﬂ])
Fre{igsty, .o, in: ty)

Arr: (it e ty)
Atl<j<n (6)
A brij:;

3.3.2, Functions

Function types are usefu! both for characterizing pro-
grams and for characterizing the operations of ADTs.
Inference rule (7) characterizes the usual notion of
lambda abstraction, where x is the parameter, t the pa-
rameter’s type, ¢ is the body of the function, and t the
type of the function’s result.

A x:t'tert
AbA(x:the : (" =)
One function type, s — 1, is a subtype of another, s’ > t’,
if the subtype function accepts the entire domain of the
function supertype (i.e., s’ ¢ s), and produces a range
contained in the supertype range (i.e.,t¥ t'),asshown in
inference rule (8).

0]

Als <s
Akt gt 8
Atsotidot’

Function subtyping seems a little strange at first, but a
simple example helps. Assume that f is a function type
(1.4) — true and g is a function type (2.3) —
(true..false). Function type f is a subtype of g. Any in-
stance of f can always replace an instance of g in an ex-
pression without effecting the type—safety of the ex-
pression. The instance of f handles at least the values
the supertype function does, and produces no more val-
ues than does the supertype function.

Inference rule (9) characterizes the type of the resultof a
function application; if the expression supplied as an ar-



gument is of the proper type, then the result of the func-
tion applied to that expression will be well-typed.

Ate: (">
Atbte:t’ (9
Ate(e):t

333, ADTs

Inference rules (10) and (11) define type inference for
existential types [4). An existential type consists of a
type variable a, representing the type, packaged with
some number (j: ... jo) of instances of the type and/or
operations over the type.

Aker:siln
: (10)
Aten:sin
Atpack(@a=1tin(i:si, .oy jn: Sa)

(cl, v en) 132.01: S ..., Ja: Sn)

Ate:3b(Gi:sy, ..., jn:sn)
Alx: Gris, e jnisa)lmmtbe st an
A topeneasxfaline :t

A given expression e is of type s; when t is substituted
forain s, and serves as the implementation of the value
or operation labeled ji in the abstract type. This substity-
uon results in a concrete type (i.e., one with no type vari-
ables in it) for the expression. The substitution ype ¢
scrves as the representation of the abstract type, denoted
externally by the existential variable a. The actual rep-
resentation and the implementations of the operations
are not visible externally.

The pack operation constructs an instance of an abstract
type, and encapsulates its representation. The open op-
eration performs the converse, binding an abstract type
variable to a concrete type, and evaluating some expres-
sion in the context of the (now concrete) abstract type.

Subtyping of ADTs derives from subtyping of the type
parameters for the abstract type. Inference rule (12)
characterizes subtyping of two instances of abstract
types.

A <) <)
A St f12).1) 2 (3(t £12).1)

Note that in addition to providing subtyping of two
ADTs, rule (12) also supports subtyping of two in-
stances of the same ADT,

(12)

For an example of the former, 3T" 3(T < T").T” denotes
an existential type T generated by a type parameter T,
which must be a subtype of the existential type T". Since
instances of abstract types are cross products of in-
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stances and operations, T would be a subtype of T’
through additional operations.” An éxample of this ap.
peared in [17], showing stacks and dequeues as syb-
types of queues.

(.

yu

For an example of the latter, stack of integergag isa

subtype of stack of integer.

4. The Us'er Interface

A query is a boolean expression containing predicates
and the operators and, or, and not. A predicate is simply
aconstant of type tuple. When a user issues a query, the
query evaluator first treats all of the facet values in the
query as synonyms and replaces them with actual facet
values from a value/synonym relation. For example,
database, databases, data base, and data bases might
all be replaced with database.

The evaluator then locales all of the relations in the data-
base whose type conforms to some predicate of the
query by testing the type of each relation in m, using
the inference rules previously described. The query lat-
tice space for a given predicate is bounded above by the
predicate type itself, and bounded below by the partition
tuples that conform to it. For each user-specified predi-
cate, the evaluator forms the disjunction of conforming
relation tuples (with variables in each position) and then
substitutes the conjunction of the disjunction and the
new predicate in place of the original, user-specified
predicate. The result of evaluating this query is then a
set of component references for display and optionally,
retrieval from the text storage area.

Note that since tuples of more than a single type may be
displayed to the user, the query language is polymo-
rphic in one of the manners discussed in {7].

5. Discussion

The work described here is another in a series of experi-
mental user interfaces for software reuse repositories.
Our initial efforts concentrated specifically on provid-
ing substructure for faceted classification [9). This ap-
proach relied only upon the expertise of the classifier in
populating the repository, and as such, suffered from
what we refer 10 as the vocabulary problem.

The interface described here ameliorates the situation
by supporting as part of the query tuple the specificia-
tion of a formal interface structure o which the compo-
nents of interest must conform.
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A parallel effort exploring the role that algebraic speci-
fication can play in repository retrieval appears in [8).
This work is concerned particularly with retrieval over
type signatures and behavioral axioms.
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closeness metric. For example, if the facet value “editor” is closer to “word processor™ in terms of the met-
ric than any other value in any facet, then the system poses the query with the modified tuple

(format, text, file, file handler, editor, *)
and continues in this manner until a hit is obtained.

Although this appears to be a reasonable solution to the problem of continued searches, the difficulty
lies in the need to assign meaningful closeness values to pairs of facet values. With a large collection of
values, this is a daunting task.

g :: ! an'lce Basgd Sz'ass'ﬁgm Q::n T s o - ) o s ’:""T',’Tf’iri'
Lattice—based faceted classification extends s1mple faceted classification by organizing an arbitrary
number of facets and n—tuples into a lattice [5]. As shown in figure 6, there are four sublattices comprising
the complete type lattice, corresponding to the types generated by facet sets, functions, ADTs, and tuples.
In addition, the universal type, T, and the void type, ., ensure that a least upper bound and a greatest lower

bound, respecuvely. exist for any two types in the lattice.

Facety characterizes the notion of the empty facet type; it contains no values, but is still a facet. Like-
wise, Facet characterizes the notion of the set of all possible facet values. The dotted line between them
indicates that a number of types appear here in the lattice. In particular, there is a vertex for each member
of the power set formed from the elements comprising the facet. Figure 7 shows the lamce for the exam-
ples in section 4.1 expanded to show the sublattices for each of the facets.”

Funcuontypcsarebmndedaboveby.l.—)T mef\mcnontypemthavonddonmnmdmuversal
range, and are bounded below by T — 1, mefuncuontypewuhaumversal domain and void range.

ADT types are bounded above by 3e.e, the abstract type denoting a hidden type, £, with no information
or operations available, and are bounded below by ADT, the type denoting all possible types with all possi-
ble operations.

The tuple sublattice has a structure similar to that of the facets. At the top is the empty tuple type, {],
characterizing a type with no components. At the bottom is Tuple, the tuple type with all possible compo-
nents. We restrict component types to facet, function, or ADT. Note that restricting queries to only Tuple
(with all and only the Facets appearing as components) and allowing * as a default facet value reduces this
approach to the of Prieto-Diaz.
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Figure 7. The Sublattice of Facet Sets
4.2.1. Facets vs. Facet Value Sets

Traditional retrieval of individual facet values relies upon maximal conjunction of boolean terms for
retrieval of matches on all facets and maximal disjunction of boolean terms for matches on any facet of an
expression. In order to fit the notion of facet into the type lattice, we look at sets of facets. A set of facets
carresponds to a conjunction on all of the facets comprising the set. Each set occupies a unique position in
the type lattice. We handle disjunction by allowing a given component to occupy multiple lattice positions.
Matching occurs on any of the positions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation within the type
system to a particular facet value. Values are bound to some semantic concept in the problem domain.

The subset relation is our partial order. The least value of this portion of the lattice is the set of all facet
values from all facets in the problem domain, denoted by the distinguished name Facet. The greatest value
of this portion of the lattice is the empty sct, denoted by the distinguished name Faceto. The union operator
generates the greatest lower bound. The intersection operator generates the least upper bound.

4.2.2. Domain Interval Subtyping

We adapted the notion of a domain interval 4] to formalize our notion of facet value sets [6,5]. In [4]
a subtype was smaller than its supertype; here the reverse is true, a subtype is a larger collection of values
than its supertype.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a base type.
Assume that t is a base type ordered by < (the ordering may be arbitrary). A domain that is (inclusively)
delimited by two values, a and b, is denoted t..»». Intervals made up of more than a single continuous value
range are denoted by a set of ranges; for example, ta.we.d denotes the interval that includes the subinter-
val a through b inclusive, the subinterval ¢ through d inclusive, and the singleton value e. The singleton
range ¢ is equivalent to e...e. When we use such notation we intend that a < b and ¢ < d, but not necessarily



1) = TOI

2) TOI X Integer — TOI
3) TOI — TOI _. .. ..

4 T0T > Integer

5) TOI — Boolean

Figure 9 7Opemuon Pamuons

ticularly when a candidate componem s anthor chose mlsleadmg operauon names. Figure 9 shows the five
operation partitions for figures 1-3 and ﬁgure 8.

Singleton operation partitions are unamblguous, since there can be but asingle bmdmg possible be-
tween the query operation and the candidate operation. Hence, there isonly a single binding possible be-
tween each of specifications in ﬁgures 1-3, since each of the pamuons contains a single operation.

Operation partitions containing more than one operation are ambxguous and using (11), contribute a
proportional increase in the number of altenative bindings. Figure 8 has two operations in operator parti-

tion 4), Top and Depth hence the two altemauve ¢ bindings discussed above.

6. Conclusions™ ~— -~ T SR

Our approach merges traditional vocabulary and symacuc bascd retrieval mechamsms wnh xhe formal
semantics of algebraic specification. Neither retrieval mechanism in isolation is sufficient to completely
address the entire problem. Perhaps the most surprising result of this work was our realization conceming
the fuzziness of even formal specifications, due to the ambiguity of the terms used in those specifications.
This prompted the mmanon of work i in thc apphcanm of neural networks to the problem [7].

We are still reﬁmng Lhe approach described in this paper Two spectfic avenues of research include
refining partition equivalence and exploring fragmentary signatures. The current definition of partition
equivalence does not adequately address paramemc polymmphlsm and therefore does not handle compo-

nents that are instantiations of generic ADTs as well as it handles the generics themselves. Fragmentary
signatures, signatures that only partially characterize an ADT, hold excellent promise in supporting the use
of our retrieval mechanism in the incremental construction of software from a mix of newly—written code
and reused components.
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Overview. A significant hurdle confronts the software reuser attempting to se-
lect candidate components from a software repository - discriminating between
those components without resorting to inspection of the implementation(s). We
outline an approach to this problem based upon neural networks which avoids
requiring the repository administrators to define a conceptual closeness graph for
the classification vocabulary.

1 Introduction

Reuse has long been an accepted principle in many scientific disciplines. Biologists
use established laboratory instruments to record experimental results; chemists use
standardized measuring devices. Engineers design based upon the availability of
components that facilitate product development. It is unreasonable to expect an
electrical engineer to design and develop the transistor from first principles every
time one is required.

Software engineers, however, are frequently guilty of a comparable practice
in their discipline. The reasons for this are as varied as the environments in which
software is developed, but they usually include the following:

*To appear in Neural Networks and Pattern Recognition in Human Computer Interfaces, R.
Beale and J. Findlay (eds.), Ellis Horwood Ltd., West Sussex, UK, due out March, 1992.
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a lack of development standards;

the not invented here syndrome;

® poor programming language support for the mechanical act of reuse; and

poor support in identifying, cataloging, and retrieving reuse candidates.

The first three items involve organization mentality, and will not be ad-
dressed here.! We instead focus upon the final item in this list, the nature of the
repository itself, and more specifically upon the mechanisms provided for classifi-
cation and retrieval of components from the repository.

The complexity of non-trivial software components and their supporting
.documentation easily qualifies reuse as a “wicked” problem - frequently intractable
in both description and solution. We describe an approach that we are currently
exploring for making classification and retrieval mechanisms more efficient and
natural for the software reuser. This approach centers around the use of neural
networks in support of imprecise classification and querying.

2 The Problem

A mature software repository can contain thousands of components, each with
its own specification, interface, and typically, its own vocabulary. Consider the

signatures presented in Figures 1 and 2 for a ‘stack of integers and a queue of
integers, respectively. '

Create: = Stack
Push: Stack x Integer = Stack
Pop: Stack = Stack
Top: Stack = Integer
Empty: Stack = Boolean

Figure 1: Signature of a Stack

'Concerning language support — there are languages which readily support reuse, but they
must be available to the programmers. Consider for a moment the inertia exhibited by FOR-

TRAN and COBOL in commercial data processing. The very existence of such large bodies

of code in languages ill-suited for reuse acts as an inhibitor for the movement of organizations
towards better suited languages.
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Create: = Queue
Enqueue: Queue x Integer=> Queue
Dequeue: Queue =>Queue
Front: Queue = Integer
Empty: Queue = Boolean

Figure 2: Signature of A Queue

These signatures are isomorphic up to renaming, and thus exemplify what
we have come to refer to as the vocabulary problem. Software reusers implicitly
associate distinct semantics with particular names, for example, pop and enqueue.
Thus, by the choice of names, a component developer can mislead reusers as
to the semantics of components, or provide no means of discriminating between
components. Figure 3, for example, appears to be equally applicable as a signature
for both stack and queue, primarily due to the neutral nature of the names used.

Create: = Sequence
Insert: Sequence x Integer = Sequence
Remove: Sequence = Sequence
Current: Sequence = Integer
Empty: Sequence = Boolean

Figure 3: Signature of a Sequence

3 Software Classification

Retrieval mechanisms for software repositories have traditionally provided some
sort of classification structure in support of user queries. Keyword-based retrieval
is perhaps the most common of these classification structures, but keywords are
ill-suited to domains with rich structure and complex semantics. This section lays
out the principle representational problems in software classification and selected
solutions to them. -



3.1 Literary Warrant

Library scientists vse literary warrant for the classification of texts. Representative
samples drawn from the set of works generate a set of descriptive terms, which
in turn generate a classification of the works as a whole. The adequacy of the
classification system hinges a great deal on the initial choice of samples.

With appropriate tools, literary warrant in software need not restrict itself
to a sample of the body of works. Rather, it can examine each of the individual
works in turn, providing vocabularies for each of them. This may indeed be
required in repositories where the component coverage in a particular area is sparse.

3.2 Conceptual Closeness

The vocabulary of terms built up through literary warrant typically contains a
great deal of semantic overlap words whose meanings are the same, or at least
similar. For instance, two components, one implementing a stack and the other
a queue might both be characterized with the word insert, corresponding to push
and enqueue, respectively, as discussed in section 2.

Synonym ambiguity is commonly resolved through the construction of a
restricted vocabulary, tightly controlled by the repository administrators. Repos-
itory users must learn this restricted vocabulary, or rely upon the assistance of
consultants already familiar with it. It is rarely the case, however, that the choice
is between two synonyms. More typically it is between words which have similar,
but distinct, meanings (e.g., insert, push, and enqueue, as above).

3.3 Algebraic Specification

While not really a classification technique, algebraic specification techniques (e.g.,
[GH78]) partially (and unintentionally) overcome the vocabulary problem through
inclusion of behavioral axioms into the specification. The main objection to the use
of algebraic specifications in reuse is the need to actually write and comprehend
the specifications. The traditional examples in the Iiterature rarely exceed the
complexity of the above Figures. Also, algebraic techniques poorly address issues
such as performance and concurrency. R '

A repository containing algebraic specifications depends upon the expertise
of the reusers browsing the repository; small repositories are easily understood

whereas it is unreasonable to require a reuser to examine all components in a
large repository for suitability.
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3.4 Basic Faceted Classification

Basic faceted classification begins by using domain analysis (aka literary warrant)
“to derive faceted classification schemes of domain specific objects.” The classifier
not only derives terms for grouping, but also identifies & vocabulary that serves
as the values that populate those groups. From the software perspective, the
groupings, or facets become a taxonomy for the software.

Prieto-Diaz and Freeman identified six facets: function, object, medium,
system type, functional area, and setting [PDF87]. Each software component in
the repository has a value assigned for each of these facets. The software reuser
locates software components by specifying facet values that are descriptive of
the software desired. In the event that a given user query has no matches in
the repository, the query may be relaxed by wild-carding particular facets in the
query, thereby generalizing it.

The primary drawback in this approach is the flatness and homogeneity
of the classification structure. A general-purpose reuse systermn might contain not
only reusable components, but also design documents, formal specifications, and
perhaps vendor product information. Basic faceted classification creates a single
tuple space for all entries, resulting in numerous facets, tuples with many “not
applicable” entries for those facets, and frequent wildcarding in user queries.

A number of reuse repository projects have incorporated faceted classifi-
cation as a retrieval mechanism (e.g., [Gue87][Atk]), but they primarily address
the vocabulary problem through a keyword control board, charged with creating
a controlled vocabulary for classification.

Gagliano, et. al. computed conceptual closeness measures to define a
semantic distance between two facet values [GOF*88]. The two principle limita-
tions to this approach are the static nature of the distance metrics and the lack
of inter-facet dependencies; each of the facets had its own closeness matrix.

3.5 Lattice-Based Faceted Classification

Eichmann and Atkins extended basic faceted classification by incorporating a
lattice as the principle structuring mechanism in the classification scheme [EA90].
As shown in Figure 4, there are two major sublattices making up the overall
lattice.
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Figure 4: The Type Lattice

On the left is the sublattice comprised of sets of facet values (for clarity,
shown here with only three facets), partially ordered by the subset relation. The
Facetp vertex in the lattice represents the empty facet set, while the Facet vertex
represents the set of all facet values in the classification scheme. Each member of

the power set of all facet values falls somewhere within this sublattice.

On the right is the tuple sublattice, containing facet set components, and
partially ordered by the subtype relation [Eic89]. The vertex denotes the empty
tuple. The tuple vertex denotes the tuple containing all possible facet components,
with each component containing all the values for that facet. Adding facet values

to a component or adding a new component to a tuple instance moves the tuple
instance down through the lattice.

Queries to a repository supporting lattice-based faceted classification are
similar to those to one supporting basic faceted classification, with two important
distinctions — query tuples can mention as many or as few facets as the reuser
wishes, thereby avoiding the need for wildcarding, and classifiers can similarly

classify a giv=n component with as many or as few facets as are needed for precise
characterization of the component.

“Lattice-based faceted classification avoids conceptual closeness issues through
the specification of sets of facet values in the classification of components. If there
are a number of semantically close facet values that all characterize the compo-
nent, all are included in the facet instance for that component. This avoids the
need to generate closeness metrics for facet values, but it also may result in reuser
confusion about just what the component does.
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3.6 Towards Adaptive Classification and Retrieval

The principle failing in the methods described so far is the static nature of the
classification. Once a component has been classified, it remains unchanged until
the repository administrators see fit to change it. This is unlikely to occur unless
those same administrators closely track reuser retrieval success, and more impor-
tantly, retrieval failure — particularly in those cases where there are components
in the repository matching reuser requirements, but those components were not
identified during the query session.

Manual adjustment of closeness metrics becomes increasingly unreasonable
as the scale of the repository increases. The number of connections in the con-
ceptual graph is combinatorially explosive. The principle design goal in our work
is the creation of an adaptive query mechanism - one capable of altering its be-
havior based upon implicit user feedback. This feedback appears in two guises;
failed queries, addressed by widening the scope of the query; and reuser refusals,
cases where candidate components were presented to the reuser, but not selected
for retrieval. The lattice provides a nice structure for the former, but a different
approach is required for the latter.

4 Our Approach

We are currently designing a new retrieval mechanism using previous work de-
scribed in [EA90] as a starting point, and employing neural networks to address
the vocabulary and refusal problems. The motivations behind using neural net-
works include:

¢ Associative Retrieval from Noisy and Incomplete Cues: Traditional
methods for component retrieval are based on strict pattern matching meth-
ods such as unification. In other words, the query should contain exact infor-
mation about the component(s) in the repository. Since exact information
about components is usually not known, queries fail in cases where exact
matching does not occur. Associative retrieval based on neural networks
uses relaxation, retrieving components based on partial/approximate/best
matches. This is sometimes referred to as data fault tolerance and is ideally
suited for our problem domain.

¢ Classification and Optimization by Adaptation: In approaches using
the conceptual closeness measure, the problem of defining correlations be-
tween various components and assigning a numerical correlation value rests



upon the designer or the administrator of the repository. Designers idiosyn-
cratically arrive at these correlations and their values, which may not be
appropriate from the perspective of the software retriever/reuser. It is our

belief that the best way to arrive at these correlations and their values is for -

the system to learn them in responding to user queries. =

We also intend to use another adaptation strategy for optimizing the re- -

trieval of similar repetitive queries. Since in most situations, reusers repeat- _

edly issue similar queries, the system will adapt to these queries by weight =
adjustment. The weight adjustment will settle the relaxation process quickly

in response to these repetitive queries and hence result in faster retrieval, o

The effect here is similar to that of caching frequently issued queries. Note, -
however, that once the system has learned that two concepts are conceptu-

ally close, we want it to remember this, irrespective of how often the reusers =

inquire about it. - -- T w

e Massive Parallelism: The neurocomputing paradigm is characterized by —

asynchronous, massively parallel, simple computations. Since neural net- %
works are massively parallel, retrieval from large repositories is possible,

using the fast associative search techniques that are natural and inherent in -

these networks. -

5 System Architecture -

In this section, we describe some of the potential neural-network architectures and =

discuss their strengths and limitations in employing them for our task. nd

5.1 Hopfield Networks -

These networks can be used as content-addressable or associative memories. Ini- ;g;

tially the weights in the network are set using representative samples from all -

the exemplar classes. After this initialization, the input pattern I is presented to )

the network. The network then iterates and converges to a output. This output

represents the exemplar class which matches the input pattern best. -

Although this network has many properties that are desirable for our sys- -

tem, some of the serious limitations in our context include: §

1. The networks have limited capacity [Lip87] and may converge to novel spu- =

rious patterns. -

=

-
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2. They result in unstable exemplar patterns if many bits are shared among
multiple exemplar patterns.

3. There are no algorithms to incrementally train these networks, i.e., to adjust
the initial weights in a manner that creates a specific alteration in subsequent
query responses. This is important for our application, since we seek an
architecture capable of adapting over time to user feedback.

5.2 Supervised Learning Algorithms

Many good supervised learning algorithms exist, including backpropagation [RHW86],
cascade correlation and others, but they cannot be used in this context because
our problem requires an unsupervised learning algorithm. Hence, we are investi-
gating unsupervised learning architectures, such as Adaptive Resonance Theory

(ART) [Gro88].

5.3 ART

ART belongs to a class of learning architectures known as competitive learning
models [Gro88)[CG88]. The competitive learning models are usually characterized
by a network consisting of two layers L, and L;. The input pattern I is fed into
layer L, where it is normalized. The normalized input is fed forward to layer L,
through the weighted interconnection links that forms an adaptive filter. Layer
L, is organized as a winner-take-all network [FB82][Sri91][BSD90]. The network
layer L, is usually organized as a mutually inhibitory network wherein each unit in
the network inhibits every other unit in the network through a value proportional
to the strength of its activation. Layer L, has the task of selecting the network
node @m,z, receiving the maximum total input from L,. The node a,,.; is said to
cluster or code the input pattern I.

In the ART system the input pattern I is fed in to the lower layer L;. This
input is normalized and is fed forward to layer L,. This results in a network node
Nmasr Of layer L, being selected by virtue of it having the maximum activation
value among all the nodes in the layer. This node n,,., represents the hypothesis
H put forth by the network about the particular classification of the input . Now
a matching phase occurs wherein the hypothesis H and the input I are matched,
with the quality of the required match controlled by the vigilance parameter.

If the quality of match is worse than the value specified in the vigilance
parameter, a mismatch occurs and the layer L, is reset thereby deactivating node
Npmaz- The input I activates another node and the above process recurs, comparing
another hypothesis or forming a new hypothesis about the input pattern I. New



hypotheses are formed by learning new classes and recruiting new uncommitted
nodes to represent these classes.

Some of the properties of ART that makes it an potential choice for our
task include

1. Real-time (on-line) learning;
2. Unsupervised learning;
3. Fast adaptive search for best match as opposed to strict match; and

4. Variable error criterion which can be fine-tuned by appropriately setting the
wigilance parameter.

- - However, one of the limitations of ART for our particular task arises from
its inability to distinguish the queries for particular components by users, from the
component classes which form the exemplar classes. Another limitation arises from
the fact that only one exemplar class is chosen at a time which represents the best
match, rather than choosing a collection of close matches for reuser consideration.

Our proposed system will operate in two phases. The first, loading phase
populates the repository with components. The second, retrieval phase identi-
fies candidate components in response to user queries. The distinguishing factor
between the two phases is the value of the vigilance parameter. In the loading
phase, the system will employ a high vigilance value. This ensures the forma-
tion of separate categories for each of the components in the repository. In the

retrieval phase, the system will employ a low vigilance value, thereby retrieving
components that best match the query. o

We also intend to modify the winner-take-all network layer of the ART to
choose k winners instead of one. This is extremely useful in our context because
there may be multiple software components which meet the user specifications.
The software reuser may select a subset m < k of these components based upon
requirements. The system should associate these m components with the user
query and retrieve them for subsequent queries having similar input specifications.
This can be achieved by associating small initial weights on the lateral links of the
winner-take-all network and modifying them appropriately based on user feedback
(i.e., reuser refusals). =
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6 Discussion

6.1 Our Placement in the User-Based Framework

Discussions in the workshop placed our work in the region of user intention / no
feedback in the user-based framework. Upon further reflection, we have slightly
altered our perspective. While this placement is certainly proper in the strict
context of a single user query, it is not accurate in the broader context of a
community of users accessing the repository over time.

As the system is rewarded for providing true hits to users and punished for
providing false hits, there is a consensual drift, providing feedback for subsequent
user queries. Thus, viewing the amortized effect of user behavior, rather than the
immediate effect of user behavior, our system shifts down towards passive obser-
vation and left towards immediate feedback.? The net result is that our system

“occupies two distinct points in the framework, one for the semantics involved in

the immediate query query and one for the semantics involved in the aggregate
behavior of the repository over time.

6.2 The Relationship to Gestural Recognition

Beale [BE], Rubine [Rub], and Zhao [Zha], the other occupants of the Novel Input
category of the task-based framework, respectively address sign language recogni-
tion, drawing geometric figures, and diagram editing - all interpreting imprecise
human gestures and mapping them to a precise application domain. They all
address the inability of humans to accurately repeat physical movement.

Our mechanism, on the other hand, accepts a precisely phrased user query
and adapts it to an imprecise application domain. Ignoring the issue of poor
typing skills, our user community can accurately repeat a given user intention
(query) any number of times, and we know exactly what that intention is. The
challenge in our domain occurs when that intention has no exact match in the
system. It’s similar to Rubine’s system offering to draw a square or a hexagram
(or perhaps even a five-sided star) when the user gestured a pentagram, but the
system had no training in pentagram gestures. ”

2or more precisely, non-immediate feedback.
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6.3 Directions for Future Research

Options available to us at this point in our work lie in two general directions,

further extending repository semantics and exploring the application of neural
networks to these types of application domains. . .- .- .. _ .

With respect to the former, the classification scheme described here is
restricted to facets and tuples containing facets. In other work, the classification
scheme was first extended to include signatures for abstract data types [Eic91a]
and then further extended to support axioms in a second phase in the query
process [Eic91b]. A merger of that work with that described here has appeal -

particularly the imprecise matching of signatures,

With respect to the latter, we are interested in studying the tradeoffs
between individual user adaptation versus the consensual adaptation described
above. These two actually are the extremes in a continuum of user groupings.
This coupled with an additional dimension of user expertise forms a state space of
user behavior where the system might more heavily weight certain semantic con-
nections for experts and other semantic connections for novices. This will require
the development of new algorithms for relaxation.

7 Conclusions

Our approach extends previous work in component retrieval by incrementally
adapting the conceptual closeness weights based upon actual use, rather than an
administrator’s assumptions. Neural networks provide a quite suitable framework
for supporting this adaptation. Reuse repository retrieval provides a unique and
challenging application domain for neural networking techniques.

This approach effectively adds an additional dimension to the conceptual
space formed by the type lattice. This additional dimension allows traversal from
one vertex to another using the adapted closeness weights derived from user ac-
tivity, rather than the partial orders used in defining the lattice. The resulting
retrieval mechanism supports both well-defined lattice-constrained queries and
ill-defined neural-network constrained queries in the same framework.
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Abstract

Inheritance is a powerful mechanism supported by object-oriented programming languages
to facilitate modifications and extensions of reusable software components. This paper presents
a taxonomy of the various purposes for which an inheritance mechanism can be used. While
some uses of inheritance sigaificantly enhance software reuse, some others are not as useful and
in fact, may even be detrimental to reuse. The paper discusses several examples, and argues
for a programming language design that is selective in its support for inheritance.

Keywords: extensions, implementation, inheritance, reusable software components, specifi-
cation

1 Introduction

Inheritance has been widely recognized as an important mechanism for constructing new reusable
software components from existing components [Liskov 87, Meyer 88]. This paper proposes a tax-
onomy for inheritance-based reuse. Some members of this taxonomy permit effective reuse and
must be supported by object-oriented programming languages. However, there are other uses of
inheritance that do not enhance reuse, and may even be detrimental to reuse. A language must,
therefore, be selective in its support for inheritance. o

2 A Framework for Discussion

We will use the “3C reference model” (for reusable software components) as the basis for our
taxonomy in this paper [Edwards 90, Latour 90, Tracz 90b]. This model is the result of the discus-
sions at the Reuse in Practice Workshop (July 1989) and the Workshop on Methods and Tools for



Reuse (June 1930). Tile%:ic model associates three keyv ideas with reusable software components as
summarized in [Weide 91]:

Concept An abstract (formal) specification explaining (precisely) what functionality is provided
by a software piece. without saying how the functionality can be realized.

Content (for a concept) A piece of code that (precisely) describes the data structures and algo-
rithms for implementing (in a formal, programming language) the concept.

Context A statement (precisely) explaining the environment (using formal notations) in which a
concept or content is presented.

Several contents may implement the same concept. They will all be identical with respect to
their functionality, but may be different with respect to their performance behaviors (e.g., space
or time characteristics) To use a component, a client (user) needs to understand only its con-
cept. The functional correctness of the client program depends only on this concept [Parnas 72].
The client will remain unaffected even if it switches from one content of the concept to another.
These observations have important implications for modification and maintenance of software built
from reusable components. We have used a similar model in our research to characterize the
nature of a components industry that would evolve when current reuse efforts prove successful
[Muralidharan 90b, Sitaraman 90, Weide 91].

3 A Classification of Uses of Inheritance

Inheritance can be used, in the above framework, to extend (or modify), and thus, reuse each aspect
of a software component - concept, content, and context. This section presents a classification of
such uses of inheritance. We restrict our attention in this paper to inheritance of concepts and
contents alone. It is important to note that our classification has nothing to do with the actual
inheritance mechanisms supported in object-oriented languages; it deals only with the possible uses
of inheritance.

3.1 A Classification Scheme

The critical issues in inheritance mechanisms from a reuse perspective are who inherits, what is
inherited, and what can be done with that which is inherited. We consider each of these issues in
turn. This discussion supports both single and multiple inheritance.

(i) Who inherits and from whom

Specification inheritance occurs when parents are concepts. Implementation inheritance occurs
when parents are contents. These definitions are similar in spirit to those found in [LaLonde 89].
The heir can be either a concept or a content for either specification or implementation inheritance.
The only combination that is not meaningful (based on our definitions) is inheritance of a content
by a concept.

(i1) What parts are inherited

[ 3]
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We focus our attention here only on formally defined concepts and contents that implement
these concepts. A formal concept for a data abstraction has two parts: the abstract mgdel(s) that
describes the type(s) provided by the concept, and the abstract specifications of the operations on
the provided type(s). (When a concept provides only a procedural abstraction, only the second
part is present.) The appendix describes an example concept - a formal specification of a stack data

abstraction.
A content for a concept defining a data abstraction also has two parts: the representation(s) of

the provided type(s), and the code for the provided operations.
An heir may selectively inherit only parts of a concept or content.

(iii) The mode of inheritance

An heir may inherit parts of a concept or a content for read only or for redefining purposes.
When a heir redefines a part of its parent, the re-definition may or may not be “compatible” with its
parent. The definition of compatibility depends on what is inherited: usually it involves restricting

the domain of one or more inherited types.

3.2 Specification Inheritance - Inheritance of a Concept

A concept can be inherited by either another concept or by a content. (When multiple concepts
are inherited, different concepts could be affected differently.)

3.2.1 Inheritance by a concept

First, we define what it means for an heir to compatibly redefine its parent’s parts. The abstract
model A of an heir is compatible with the corresponding model B of its parent, only if the parent
concept is unaffected by substituting A for B. (For. example. the heir’s model should satisfy the
invariants in the parent concept.) An operation P in an heir is compatible with the corresponding
operation Q in its parent. only if P’s pre-condition is no stronger than Q's and P’s post-condition
is no weaker than Q’s.

Because few object-oriented programming languages have included rigorous formal specifica-
tions, the issues raised by some of these combinations have not been explored in the community. .
In table 1, the meaningful combinations are marked with a e. For want of space, we discuss the
meaning and relevance of only some of these combinations here.

(i) Read only - both abstract model(s) and operations

Table 1: Inheritance a concept by another concept

| Mode [ None | Model | Operations [ Both |
Read only B . |

Read and compatible rede fine
Read and incompatible rede fine o




This is probably the most common mode for specification-based extensions. For example, a basic
stack concept may provide the operations push. pop. and is-empty. This concept may be extended
to include. say, an operation to teverse a stack. The typical reason for extending a concept is either
that the original concept is not sufficiently complete or that it is in the developmental stage. In
[Sitaraman 91]. we have argued for a reason to extend even well-designed concepts for building
efficient implementations. Without the ability to inherit a concept. this is impossible to do. This
use of inheritance can enhance reuse and programming languages must support this possibility.

(1) Read all and compatibly redefine - operations =~

Sometimes, it may be essential to create a new concept by modifying the specifications of an
existing concept. If the changes are compatible ( according to the definitions of compatibility in this
section) with the specifications in the original concept, then the new concept can be used wherever
the original concept was being used. For example, a stack concept can inherit from a bounded stack

concept, and relax the pre-condition on the push operation. Intuitively, an unbounded stack can
be used wherever a bounded stack can be used.

(iii) Read all and incompatibly redefine - operations

If a stack concept is already defined, and someone extends it to be a bounded stack, this will be
the case. In this case, the model of the stack has to be extended to include a bound. In addition,
while the original stack will have no pre-condition for the push operation, the heir concept will have
one. This is incompatible because the heir has a stronger pre-condition. Intuitively, a bounded

stack cannot be used where an unbounded stack was previously used. If the abstract model of a

type is redefined, the specifications of most, if not all, operations will have to be redefined. In this
case, inheritance may result in some, but not in significant reuse.

3.2.2 Inrhreritén_ce by a content
When a concept is inherited by a content. only few combinations are meaningful.

(i) Read only - both abstract model(s) and operations

This is the most normal case of ‘concept inheritance by content. To implement a concept, a
content must inberit it for read only purposes. Of course, more than one content may inherit

the same concept in this mode, resulting in multiple implementations of a concept. This is an

important use of inheritance [Meyer 88, Sitaraman 90]. and is crucial for the evolution of a successful
components industry.

Table 2: Inheritance of a concept by a content

[ Mode — [ None | Model Operations@
Read only T 7 o
Read and compatible redefine e
Read and incompatible rede fine

!
il

I

fa g g€

qai

il @l R @ WD el s

|

|



8

g

(ii) Read all and compatirbwl‘y: redefine - operations

Sometimes, an implementation of an operation may require fewer pre-conditions than stated in
its specifications and ensure more post-conditions. In this case. the operation does more than what
the specification of the operation needs it to do. For example. an operation may reclaim unused

storage even if it is not explicitly stated in its specification.
(iii) Read all and incompatibly redefine - operations

This is an implementation where the code for some operations do not provide the behavior
specified in the concept. In otherwords, this content does not correctly implement its concept, ie.,
it is incorrect. Clearly, this is a bad use of inheritance.

3.3 Implementation Inheritance - Inheritance of a Content

A content can be inherited only by another content. The concept of the parent and the heir may
or may not be the same. Just as in the case of a concept. a content may be inherited in three
different modes. A content redefines a representation compatibly only if the heir’s representation
when used in the place of the parent’s representation leaves the parent content unaffected. A
compatible redefinition of an operation does not violate the specification of the operation in the
parent content's concept. Content inheritance may also be selective. (When multiple contents are
inherited, different contents could be affected differently.)

(i) Read only - both representation(s) and operations

Apparently, this use of content inheritance is to permit an heir take advantage of the otherwise
hidden details of another content. For a well-designed component, providing “sufficiently complete”
functionality, all essential details of the content may be accessed by calling the operations in its
concept. This use of inheritance helps in avoid a few procedure calls, but clearly violates the
principle of information hiding. This can lead to serious pitfalls, including poor developmental

~ independence and maintainability [Muralidharan 90a. Raj 90]. This may. however, be a useful way

=3

of keeping track of different versions of the same content.
(ii) Read all and compatibly redefine - operations

This case of content inheritance probably is most useful to keep track of the different versions
of an evolving content.

(iii) Read all and compatibly redefine - both rep. and operations

Table 3: Inheritance of a content by a content

I Mode 7 | None | Rep. | Operations ] Both ]
[ ]
®
[ J

Read only .
Read and compatible rede fine . o .
Read and incompatible rede fine o .

(1]



Sometimes. when a new concept is created by compatibly redefining an existing concept, it may
be possible to create a content for the new concept by compatibly redefining a content of the original

concept. The new content. in this case. will also be a content for the original concept. .. -

Incompatible redefinitions may be usefu
all uses of content inheritance suffer from certain basic problems because their violate information

hiding.

4 Discussion
ort one mechanism for inheritance that is

Object-oriented programming languages typically supp
believe the mechanism should be discrim-

useful for various purposes. While this is important, we
inatory and allow only certain uses. \Ve have shown that most uses of specification inheritance

are useful and some uses of implementation inheritance may not be desirable. The components of
a library that would evolve from discriminatory uses of inheritance will facilitate construction of
software systems that are reliable. modifiable, and maintainable.

The work presented here can be formalized, and extended to compare inheritance mechanisms in

various languages and the forms of uses that are supported. Also,
esting examples for the various classes, thereby leading to a better understanding of the usefulness

of these classes. The present scheme should also be enhanced to account for context inheritance.
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5 Appendix: An Example Concept

Figure 1 shows a concept for a Stack component explained using a model-based specification. For
our purposes, it does not matter which specific specification language and/or programming language
is used in explaining concepts and contents. The concepts could use any of the formal methods
described in {Wing 90]. We have chosen a dialect of RESOLVE [Weide 91].

Here, the type Stack is modeled as a mathematical STRING of Items and the operations are
formally specified using mathematical string functions EMPTY and POST. Each operation has
been explained using two clauses: a requires clause that states what must be true of the arguments

7



concept Stack_Template (type Item)
type Stack is modeled by STRING (Item) o
initially for all s: Stack, s = EMPTY

op?ér;{ifgﬁil;ﬂéﬂ(sr:' Stack, x: Item)
ensures s = POST(s, x) and Item.Init (x)

operation Pop(s: Stack, x: Item)
requires s /= EMPTY
ensures #s = POST (s, x)

operation Is_Empty(s: Stack) return Boolean
ensures Is_Empty iff s = EMPTY
end Stack_Template

Figure 1: Formal Specification of a Stack Abstraction

passed to the operation and an ensures clause that states what will be true of the parameters at the
completion of the operation. In the ensures clause, the notation “#x” for a parameter x denotes its
incoming value and RxS denotes its value when the operation returns. (In the requires clause, the
variables always denote the incoming values.) The specification of Push, for example, states that
the value of the returned stack (s) is its incoming value (#s) with the incoming value of x (#x)
appended to the end. The returned value of x is an initial value of the type Item.

6 About the Authors

Murali Sitaraman is an Assistant Professor of Computer Science at the West Virginia University. He
holds a Ph. D. in Computer Science from The Ohio State University and M. E. (distinction) from
the Indian Institute of Science. His current research interests are in data structures and algorithms,
programming languages, software reuse, verification and validation, and some aspects of distributed
computing. His Internet address is murali &cs.wvu.wvnet.edu.

David Eichmann is currently an Assistant Professor of Computer Science at West Virginia
University and heads the Software Reuse Repository Lab (SoRReL). He received his doctorate
in computer science from The University of Iowa. and taught in Seattle University’s Master’s in
Software Engineering Program before joining WVU. His research interests focus on software reuse
systems. particularly in the representation and retrieval of life cycle artifacts, and on database
systems, particularly in type systems for databases. SoRReL is currently supported in part by
NASA’'s RBSE project (previously known as AdaNet).

(0]

W e @ ew @ e Sw Qi & g

o e e






I




(i

£

{

NO2-12390

Supporting Multiple Domains in a Single Reuse Repository
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Abstract: Domain analysis typically results in the construction of a domain—
specific repository. Such a repository imposes artificial boundaries on the shar-
ing of similar assets between related domains. A lattice-based approach to re-
pository modeling can preserve a reuser’s domain specific view of the reposi-
tory, while avoiding replication of commonly used assets and supporting a more
general perspective on domain interrelationships.

Keywords: domain analysis, software reuse, faceted classification, type lattices,

record subtyping, repository views
1. Introduction

There is an emerging consensus on the importance of domain analysis in the success of a

software reuse program [9]. We find it particularly significant that the construction of domain-
specific repositories is a natural consequence of domain-specific analysis of various software
system assets. These domain—specific repositories provide yet another guise for the NIH (not—-
invented-here) syndrome, and hence fail to capitalize on possible reuse scenarios that lie in re-

lated, but distinct domains.

We propose here that repositories should not be domain—specific, but rather that a particular
view of the repository should be domain—specific, and that this view should be user-adjustable.
We use our lattice—based approach to classification [4] to demonstrate how this can be accom-
plished. Section 2 briefly reviews issues in domain analysis, faceted classification, and the con-
cepts of typing and lattices. Section 3 reviews our lattice—based repository model, followed by a
demonstration of domain—specific support in section 4. The paper closes with a discussion and

suggestions for future work with section 5.

* This work was supported in part by NASA under cooperative agreement NCC-9-16, and in part by
MountainNet, Inc.



2. Background
Our work draws its motivation equally from the areas of domain analysis and type theory.
Recent advances in the application of type lattices to database models and knowledge represen-

tation provide an excellent formal framework for repository structure.

2.1. Domain Analysis

“Domain analysis is the process of identifying and organizing knowledge
about some class of problems — the problem domain — to support the descrip-

tion and solution of those problems.” tl]

The interest in domain analysis reflects its importance to the effective population and use of
reuse repositories. There are substantial arguments in favor of the reasoned coverage of a par-
ticular software system problem domain, rather than a grab—bag approach to populating the re-
pository. Reusers frustrated with gaps in the coverage of the repository frequently fail to retum
to the repository. We refer the reader to the excellent collection edited by Prieto—-Diaz and
Arango for a deeper presentation of domain analysis [9]. R

However, we do have m;eyyations conccrning the cxclusivcncss of @main—spgcﬁﬁc Teposi-
tories. Particular classes of assets are best considered domain—-independent — or perhaps more
aptly — useful in a broad class of domains; the most obvious asset class of this nature is that of
the simple abstract data types. These “trans—-domain” assets effectively form their own domain,
which numerous, more restrictive domains draw upon for representational infrastructure. Do-
main analysts are thereby presented a dilemma, to replicate the trans-domain assets into the do-
main—specific repositories (along with the inherent maintenance headaches), or to factor the
trans—domain assets into their own domain — resulting in a multi-domain environment. The

work presented here attempts to resolve this dilemma.

F lassificati
Faceted classification begins by using domain analysis to identify and examine a ,c,ol!ccﬁon

of work perceived to be related [12]. This process relies on a library notion known as ﬁtcrafy
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warrant, where a classifier collects a representative sample of titles which are to be classified,
and extracts descriptive terms to serve as a grouping mechanism for the titles. From this process,
the classifier not only derives terms for grouping but also identifies a vocabulary that serves as
values within the groups. A facet then is the encapsulation of a set of related concepts, ex-

pressed in the vocabulary of the domain.

From the software perspective, the groupings or facets become a taxonomy for the software.
Using Literary Warrant, Prieto—Diaz and Freeman identified six facets that can be used as a tax-
onomy [10]: Function, Object, Medium, System Type, Functional Area and Setting. Every
software component is classified by assigning a value for each facet for that component. For ex-
ample, a software component in a Relational Database Management System that parses expres-
sions might be classified with the tuple

(parse, expression, stack, interpreter, DBMS, ).
Thus, the Function facet value for this component is “parse”, the Object facet value is “expres-
sion”, etc. Note that no value has been assigned for the Setting facet as this software component
does not seem to have an appropriate value for the Setting facet. The taxonomy formed is “flat”
in that there is no nesting of facets within facets, as is the case with other popular classification

schemes (e.g., the Dewey decimal system, the ACM Computing Reviews system, etc.).

2.3. Lattices

Our principle concept for structuring the repository is a lattice. Lattices handily support in-
stances that are pairwise incomparable (e.g., a tuple characterizing a design document and a
tuple characterizing a conference paper), but that are both comparable to some third instanqc
(e.g., the more general notion of a document, which is an upper bound in lattice terminology).
The remainder of this section provides a brief review of lattice theory, section 3 presents the ap-

plication of lattices to faceted classification.



2.4. Subtypes and Inheritance

The object classes in an object-oriented system are organized into a partial ordering. Object
classes (subtypes) inherit 'aittn'butcs' and methods from their ancestors (supertypes) in the order-
ing. Single inheritance schemes restrict a given object class to at most one immediate ancestor
in the partial ordering. Multiple inheritance schemes allow a given object class to have any
number of immediate ancestors in the partial ordering. Cardelli formalized some of the seman-

tics of multiple inheritance in [2].

Conformance allows one type instance to be treated as if it were an instance of another type
[8]. Any type a conforms to any type b if the subtype relation holds between a and b, i.e.,a$ b.

In a limited sense, this is what happens with inheritance, but conformance is more general. In-

hcriiiéncé”requircs thai this uea;xncnt Ot;lybe allowcd whcn moving up the typc hierarchy or lat-

tice. Inheritance uses a partial orgie;ing of types (by subtype), plus an implicit definition of exis-

ven type and its ancestors. Conformance can hold for arbitrary
types, independent of any type ordering scheme. Such a notion is clcarly_ superior to inhcritance
based upon hierarchies or lattices for type-related query languages, where intermediate results

(derived from existing types, but not part of the database schcma) need to be manipulated.

Our classification scheme requires the notion of subtype to be defined between instances of
facet set types and between instances of record types. Let a be a facet set type containing m fac-
et instances and b be a facet set type containing n instances. Then a is a subtype of b, written a 3

b, if for each biin b (1 €i <n), biis also in @. Similarly, letR ={i:t, ..., i : t.} be a record type

containing n components and S = {i. : t’, ..., i : t'a} be a record type containing m components, 1 <

m < n (we can reorder component entries as necessary). ThenR is a subtype of S, written R 2, if

foreachi;, (1 €j<m), 43 ¢,

3. Lattice—Based Faceted Classification =~
Inheritance~based systems are, in some sense, nagvigational. A user querying an object—ori-

ented database must be aware of the inheritance structure of that specific database, just as a user
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querying a network database must be aware of database structure. Because of their non—naviga-
tional characteristics, conformance—based models promise to gain prominence over inheritance—
based models, just as relational models have over network models. Our approach uses confor-

mance to identify components using their position in a type lattice. One particularly useful con-
sequence of this choice is the ability to dynamically evolve the repository structure, adding new

vertices to the lattice as analysts examine new domains.

3.1, The Type Lattice

Figure 1 shows the general structure of the reuse type lattice. Atthe topis T, the special
universal type. Any value conforms to the universal type. At the bottomis L, the void type.
These two special types ensure that any two types in the lattice have both an upper bound and a
lower bound. Between the universal and void types appear the upper and lower bounds for the
two type constructors facet and tuple. Facety characterizes the notion of the cmﬁty facet type; it
contains no values, but is still a facet. Likewise, Facet characterizes the notion of the set of all
possible facet values. The dotted line between them indicates that an arbitrary number of types
may appear here in the lattice. For example, figure 2 shows the sublattice for facet sets for the

examples in section 2.2.

The tuple sublattice has a similar structure. At the top is the empty tuple type { }, character-

izing a tuple with no facets. At the bottom is tuple, the tuple type with all possible facets.

Facety {)
Fac':ct\/mble
1

Figure 1. The reuse type lattice



Traditional retrieval of individual facet values relies upon maximal conjunction of boolean

terms for retrieval of matches on all facets and maximal disjunction of boolean terms for

matches on any facet of an expression. In order to fit the notion of facet into the type lattice, we
look at sets of facets. A set of facets corresponds to a conjunction on all of the facets comprising
the set. Each set occupies a unique position in the type lattice. We handle disjunction by allow-

ing a given component to occupy multiple lattice positions. Matching occurs on any of the posi-

tions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation

within the type system to a particular facet value. Values are bound to some semantic concept in

the problem domain.

The subset relation is our partial order for facets. The least value of this portion of the lattice
is the set of all facet values from all facets in the problem domain, denoted by the distinguished
name Facet. The greatest value of this portion of the lattice is the empty set, denoted by the dis-

tinguished name Facety. The union operator generates the greatest lower bound. The intersec-

tion operator generates the least upper bound.

Facetp

Functionp Objecty Mediumy SystemTypco FunctionalArea,

Function  Object  Medium  SystemType FunctionalArea

Facet

Figure 2. A Sublattice of Facet Sets
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3.2. The Inference Rules

A formal mechanism for the specification of the query semantics is clearly of use. In this
case, type inference directly applies to the problem. We begin with a brief remark concerning
notation. In the inference rules that follow, the symbol A represents an existing set of assump-
tions. A always contains the type information generated by the database schema which imple-
ments the repository. It is occasionally necessary to extend the set of assumptions with some
additional information. A . x denotes the set of assumptions extended with the factx. AF x
states that given a set of assumptions A, x can be inferred. Inferences above the horizontal line
act as premises for the conclusions, the inferences below the horizontal line. An expression is
well-typed if a type for the expression can be deduced using the available inference rules, other-
wise it is ill-typed. We give in this section only a minimal set inference rules to provide a flavor

of the complete set, which may be found in [3, 4].

3.2.1. Domain Interval Subtyping

Typically, a subtype is “smaller” than its supertype, for example, the range of employee ages
is a subtype of the integers. Here the reverse is true, a subtype is a larger collection of values
than its supertype — some entry containing at least all the facet values of interest is thereby an

instance of a subtype of the query instance’s type.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a
base type. Rule (1) extends subtyping to domain intervals, where each subinterval in the sub-
Af F t(m;...m)i tmy'.m)

A -'- .t_('.n‘::_'.',! Li tS_mt' 1) (1)

At tmy. ny, ....omi.n)3 Umy' oy om0
type is a subtype of some interval in the supertype. Assume that ¢ is a base type ordered by <

(the ordering may be arbitrary). A domain that is (inclusively) delimited by two values, a and b,
is denoted t...». Intervals made up of more than a single continuous value range are denoted by
a set of ranges, for example, tq..b,c...q ¢ denotes the interval that includes the subinterval a

through b inclusive, the subinterval ¢ through d inclusive, and the singleton value e. The single-



ton range e is equivalent to e...e. When we use such notation we intend that a < b and ¢ < d, but

not necessarily that b < c or d <e. An empty pair of brackets, to, denotes an empty interval, i.e.,

one which contains no elements. In our particular application, the base types are finite sets of

enumeration (facet) values.

3.2.2. Tuple Subtypmg o L

This coIlecuon of mfererxce rulcs cxphcrtly types thc mplcs that classxfy components. The
unlabellcd record attnbutcs uscd by Pncto—Dxaz in tuples can be amblguous when a given facet
value is used in more than one domam Rathcr than require that facet values be distinct across
facets, we view a tuple r to be of type record, {ii:t, .., ia : ta}. Type ¢ for attribute i; must be a
facet type. The empty tuple (i.e., the tuple contammg no facets) is of type {}, the tuple type with

no components. The order in which componcms appcar is arbrtrary since attribute name is used

to distinguish facets.

Rule (2) characterizes record subtyping, handling sinrations where a component of the sub-
 Abl<ms<n
ARty
R : 2
Abtndts
AF (it o im i Uy ooyin s tn) S (12t eees im ¢ tm)
type is a subtype of the corresponding componcnt in the supertype.

4, Modellng Multiple Domalns ln a Single Reposltory - ,

The reposxtory model prcsentod in sr-cciuon 73,15 well-suited to supportmg muluplc domams
simultaneously, while allowing for the appcarancc of domain-specificity where necessary. Our
model further supports the notion of a completc life cyclc repository, as many of the issues ap-

plicable for component assets from mult:plc dommns apply equally well to the characterization

of life cycle assets.

Consxder the cffect of domam analyscs on the dcf'mmon of the resulting repositories. If we

assume that cach domain analysxs is camcd out in isolation (in order to focus solely upon the

an
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requirements of that particular domain), it naturally follows that the collection of facets used to
characterize that domain (and the values that make up each of those facets) will also be inde-
pendent. Realistically though, no domain is totally independent from all others, and there will

be facets (or subsets of facet values) that two related domains will have in common.

A maximal upper bound for a domain is the distinguished vertex in the lattice that contains
exactly those facets used in classifying the domain, but that contains no facet values. A maximal
lower bound for a domain is that distinguished vertex in the lattice that contains exactly those

facets used in classifying the domain, and for each of those facets, the n—tuple contains all values

'l‘lscd by that facet. All instances in the domain fall somewhere between the maximal lower

bound and the maximal upper bound for that domain. There are three possible relationships be-

tween domains in the unified lattice.

First, domains that share one or more corﬁplctc facets, but differ by at least one facet, have
facet n—tuples that are siblings in the lattice. Their only commonality is the n—tuple correspond-
ing to the least upper bound of the two n—tuples involved; i.e., neither is a subtype of the other,
but they do share a common supertype. By inference rule (2), this is the n—tuple comprised ex-
actly of those facets which the two domains share. Domain interval subtyping does not come

into play, since all facet instances contain all values in their respective facets.

Next, domains that share the same set of facets, but only partially share facet values for one
or more facets, and differ by at least one facet value in some facet, are likewise siblings in the
lattice. They share a single maximal upper bound, since they are classified by the same facets,
and they have a greatest lower bound that is comprised of the union of each of the respective

facet value sets.

Finally, domains that share some, but not all, facets, but only partially share facet values for

one or more facets, are likewise siblings in the lattice. Both this and the second relationship be-



tween domains require inference rule (2), plus the entire set of inference rules for domain inter-

val subtyping.

4. [atti itory Views
Reusers wishing to focus on a specific domain in our model need only concentrate on the

sublattice defined by the maximal upper and lower bounds for that domain. Restricting queries

to mentioning only those facets present in those n—tuplcs cffccuvcly reduccs the repository data

model to a flat tuple spacc in the tradition of Prieto-Diaz. Thc restriction is easily accomplished

by providing reposxtory views 51m11ar in naturc to thc rclatmnal deﬁmtlon ofa wcw

A repository view is defined by a pair of n—tuples: the first characterizing the upper extent of
the lattice that the view may reference, and the second characterizing the lower extent of the lat-
tice that the view may reference. By varying the placement of these view extents in the lattice, a
variety of repository structures may be presented to the reuser. The upper extent specifies those
facets which the user query must specify, and the lower cxtcntspecxﬁcs those facets which the
user query may specify. Defining multiple repository views supports the presentation of arbi-

trary domains in a single composite view.

The most gencré.l example of this is an uppef extent of () and a lower extent of tuple opens

the entire repository to the reuser.

An upper cxtcnt of thc maximal upper bound for a dommn and a lowcr extent. of the maximal

lower bound for that same domam restricts the reuser to spemfymg at most and at least those fac-

ets used in classifying that pamcular domain, i.e., a ﬂat tuplc space with a shght vanatwn (sets

of facct values may be specxﬁcd but nced not bc)

An upper extent comprised of two empty facets and a lower extent of tuple supports the no-
tion of a multiple inheritance structure rooted at those two facets and including any vertex that

includes at least those facets.
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Specifying a lower extent with a facet containing only a subset of the complete facet restricts
reusers employing that view from accessing any asset not classified using values from that sub-

set.

43R i ner

As mentioned previously, few domains are truly independent from all others. A domain—
specific repository with good coverage of that domain must necessarily duplicate at some level
assets that are very similar to, if not duplicates of, assets found in repositories for closely related
domains. Repositories supporting a collection of related domains avoid this unneeded replica-

tion of assets.

Many of the assets comprising these repositories will be adaptable to a variety of domains
beyond the one for which they were initially designed. This synergy of assets promises a deeper
understanding of the software process, but an understanding more difficult to achieve with the
artificial boundaries of domains impeding access. Presenting a seamless integration of a diverse

universe of assets is critical to the success of software reuse.

If the user interface for the reuse system supports the possibility of multiple repository back—
ends, each specific to a given domain, it is possible to avoid asset replication. However, this im-
plies cooperation between repository administrators that may not be convenient, or even feasi-
ble. In a mature reuse industry, repositories will be geographically distributed and span work
groups, organizations, and even industries. Here again, scamless integration of multiple reposi-

tories is important, and not readily handled by a flat, static classification structure.

4.4 The Relationship to Life Cycle Asset |G larif
As we previously mentioned, we are interested in a complete life cycle repository model, in-

cluding requirements assets, design assets, and so on, as well as the traditional component assets.

Granularity issues are particularly interesting in such a model, as reusers attempt to track par-

ticular concepts through requirements and design and on into maintenance.

~11-



Such a data model adds facets particular to a specific life zcycle prlrlése,rbr pérticular to a spe-
cific level of granularity, just as independent domain analysis adds facets to a particular domain.
In effect, the resulting mpdsitory model contains three dimensions: domain, life cycle phase, Vand
granularity. The definition of facet values and the corresponding set of lattice vertices handles

domains and life cycle phases. Multiple vertex instances handle granularity issues under our

current approach.

5. Conclusions and Future Work

We described here an approach unifying the specificity of domain—specific repositories with
the flexibility of domain—independent repositories. The primary drawback we see in Pricto—
Diaz’ approach to clasmﬁcatxon is the flatness and homogcnelty of thc classification structure. A
general reuse system mlght have not only reusable components, but also design documents, for-
mal specifications, and perhaps vendor production information, to narhe a few possibilities, and
have all of these things for multiple problem domains. Prieto-Diaz’ scheme creates a single
tuple space for all entries, resulting in numerous facets, tuples with many “not/applicable” en-
tries for those facets, and frequent wildcarding in user queries. Our model supports precise char-

acterization of assets, and latucc—basod quencs may be as restrictive or as broad as necessary to

suit a reuser’s needs.

Conccptual closencss is a very appeahng concept m our Eramework but offers 1ts own col-
lection of dxfﬁculncs, pamcularly thc cstabhshmcnt of dxstanccs for terms in a given domain,
and the rcsolunon of confhcung distances for terms occumng in multiple domains. We are cur-
rently exploring thc use of neural networks to support adapnvc distances, based upon user esti-

mations of the relevance of query matches to the intended semantics. An carly report on this

work appears in [5].

" Related toconccptual closeness is mcldéééféoueﬁtﬁan?xgixborhgodr around n—tuples.
Conceptual closeness addresses the scmanue dlstancc bctwecn two facet values, while concep-

tual neighborhoods address thc semantic dxstancc betwccn two n—tuples in the lattice. The re-
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pository model described here is one mechanism for constructing a conceptual neighborhood,

based upon subtype relationships. We plan to consider alternative neighborhood definition

mechanisms, including composi'ﬁg distances for n—tuples from the distances for facet values in-

volved in those n—tuples. We are also considering the inclusion of signatures [7] and semantics

[6, 11] into the repository model to improve query effectiveness.
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Abstract

Three sample information retrieval systems, archie, autoLib, and
WALIS, are compared as to their expressiveness and usefulness, first
in the general context of information retrieval, and then as prospec-
tive software reuse repositories. While the representational capabil-
ities of these systems are limited, they provide a useful foundation
for future repository efforts, particularly from the perspective of re-
pository distribution and coherent user interface design.
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1 - Introduction

As information becomes an increasingly important sector of the global economy, the way in
which we access that information ~ and thereby the way in which we access and structure know!-
edge — becomes a critical concern. The engineering of knowledge is quickly becoming an area of
research in its own right, independent of its parent disciplines of artificial intelligence, database
systems, and information retrieval; consider the title of the journal that you now hold in your hands.
Wegner recognized the value of knowledge engineering in hisilandmark article on the role of cap-
ital in software development:

“Knowledge engineering is a body of techniques for managing the complexity of knowledge... itis

capital-intensive in the sense that reusability is a primary consideration in the development of books,
expert systems, and other structures for the management and use of knowledge.” [10, p. 33]

Just as Wegner observed that the products of software engineering are capital, so are the products

of knowledge engineering a form of capital. Identification, structure, and locatability are critical to

the enabling of this knowledge capital. Innovation in this area is driven from two diverse perspec-

tives, the traditional perspective of researchers and a not-so-traditional perspective of what might

be referred to as an information underground.

The goal of this information underground is not necessarily an extension of the state of the art,
but a rather more pragmatic development of an informational infrastructure [4]. The prototypes re-
sulting from this type of work propagate quickly over the Internet, immediately generating large
numbers of users. Even while still experimental, systems that provide distinct benefit frequently
need to limit access in order to maintain reasonable system performance for other users of the un-

derlying platforms.

My reference to this community as an underground is calculated, for even within the computer
science community (let alone the academic or commercial communities as a whole), only a small
percentage of individuals are aware of such information systems. This article was spurred by my

interest in software repositories, a number of conversations that I've had in recent months, and the

1



benefit I think can be gained by widening the forum for such systems to a larger audience.

In particular, it is interesting to evaluate these systems as an enabling technology for software
reuse repositories. Repositories, andr by implication, information retrieval mechanisms, play a crit-
ical role in successful reuse. This statciheht disagrees with the c_:onventionél wisdom [9], that reuse
is a social and managerial issue, and not a technical one. A closer examination of the conventional
wisdom leads to a recognition that without a repository with substantial representational capability

many of the social and managerial requirements cannot be supported.

This paper surveys a number of interesting information server projects, with an eye towards
enabling technologies. Section 2 lays down a typical scenario in which such systems are used.
Sample sessions for three systems appear in section 3, and an analysis appears in section 4. I con-

clude with remarks on the potential of future systems.

2 — A Scenario and User Profile

Consider a programmer involved in a research project in some reasonably sized university. I

choose this context not only for its personal familiarity, but also because

* such projects typically take place in facilities with rich local and wide area network connectiv-
ity;

¢ programmers typically have a personal workstation with substantial display capabilities (e.g.,
X-Windows); and

+ there are strong incentives in avoiding the redevelopment of capabilities available from other
projects, either local or remote.

In effect, the development environment is one which is typical, or will be within the next few years.

In addition, the social infrastructure and equipment infrastructure for a successful reuse program

are present, if not an explicit charter for reuse, or a true repository.

Our programmer is now faced with a dilemma — aware that there is a strong likelihood that a
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needed tool or component already exists somewhere out on the network, but uncertain as to where
to begin the search in the thousands of systems that currently make up the Internet, or even how to
identfy the needed artifact. Until recently the only choices included asking acquaintances for ad-
vice (althoﬁ gh the study by Schwartz and Wood [7] demonstrated the amazing potential for even
ad hoc mechanisms such as this), poring over intermittently posted electronic digest news articles
for likely sounding names, or manually searching a few sites maintained by volunteers and acces-
sible through anonymous ftp. Obviously, our programmer is ripe for recruitment as a client of the

services provided by the information underground.
3 - Example Repositories

Early in the evolution of the Internet, system administrators began adapting file transfer facil-
ities into what today is referred to as anonymous ftp, comprised of publicly accessible accounts, a
limited file space, and a restricted command set. These facilities, while amazingly popular as a dis-
semination tool, presume a fair amount of user knowledge, not the least of which being where to
look for the sought-after artifact. This section describes three information systems, archie, WAIS,
and autoLib. Each of these systems has a distinct design focus, anonymous ftp access in archie,
document retrieval/display in WAIS, and a limited form of electronic library in autoLib. However,
the resulting systems have much in common, and their look and feel has several similarities. These
systems were selected for discussion because they were designed primarily as information retriev-

al systems, rather than as software repository systems.

3.1 - archie

The archie system is “an on-line resource directory service for an intemetworked environment”
[3]. While archie isn’t truly a repository per se, since it doesn’t actually contain the artifacts that it
classifies, when treated as a whole with the diverse anonymous ftp sites that it references, it does
fit into our discussion. Archie grew out of the efforts of Emtage and Deutsch to automate the cre-

ation and referencing of previously hand-maintained lists of anonymous ftp sites. A demon peri-

3
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Figure 1: archie screen upon entry
odically sweeps through a list of known ftp sites, creating a list of artifacts accessible at each of

them. This list of artifacts is then indexed for access by clients throughout the Internet seeking a

site for some particular item.

I describe the xarchie user interface here, developed by Ferguson for the X-windows system
from the ASCII user interface developed by Kehoe and the Prospero system developed by Neuman
[5]. Xarchie and archie together form an example of a client/server application architecture, where
the client application (xarchie) provides user-local support for commands, information display, and
communication to the server application (archie), which provides access to a remove facility, in
this case the archie database. Figure 1 shows xarchie's screen at entry. The series of buttons across
the top of the window control the activity of the user’s xarchie client and its interaction with an
archie server and the ftp sites which the server indexes. Figure 2 shows the xarchie settings panel,
including in particular the mode of search (exact, substring, regular expression, etc.), the order that
hits are presented (sorted by name, modification date, etc.), and the archie server host to interro-

gate, in this case archie.sura.net.

Entering a search term for an artifact, say xarchie.tar Z, a compressed Unix tar file of the xarch-
ie souréc directory, and clicking the query button initiétcs the search, as shown in figure 3. As the
search progresses, xarchie updates the status hne, indiéating establishment ofrconnrection, progress,

and completion.
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Figure 2: archie settings window
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Figure 3: Initiating an archie search

Search Term: |xarchie.ter.

Host: |

Locetion: |

File:

Size: [Mode: | {dotes |

Figure 4: archie search results
Figure 4 shows the results of the search as a list of sites in the left scrolling region in the middle

of the window. Selecting a particular site by clicking on it results in figure 5, with the location, size,

and so on for this artifact on this site. A single instance of a match at the selected site automatically

selects the middle scrolling region (corresponding to the directories) and the right scrolling region
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 Figure 5: Selection of a site and copy
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Figure 6: WAIS main window
(corresponding to the files). Multiple matches (typical with inexact matches) require the selection

of both a directory and a file for the lower fields to be filled in. Clicking the ftp button establishes
an anonymous ftp session to the archive site and retrieves a selected artifact into the local directory

shown in the settings panel (shown in figure 2 as “.’, the current directory).

mill

3.2 - WAIS

The Wide Area Information Service (WAIS) is an experiment in text-based distributed infor-
mation systems by Thinking Machines and a number of collaborators [4]. WAIS supports the no-
tion of multiple sources of information; a user selects one or more sources to respond to a question,

phrased asa strmg of words whlch are deemed rclcvant to thc qucsnon Pigurc 6 shows the main

wmdow contammg a list of prc\nously phrascd qucstxons and a list of alrcady known sources.
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Wame: [sorrel-ada-archives. src
Secver: [129.71.11.2
Service: [210
Database: |sorrel
Cost: |0 —_—
Units: [ free _ —e —_—-—4—
Description:

Server creatsd with WAIS release 0 b3 on Sep 20 14:59:46 1991 by Teuseth. cs. vwu. vwnet. sdu
antly-To: vais-directory-of-eerver think. com

fuscO6/teuse/vintel. ada

Aasr(06/ceuse/otars/tapel

fusr06/reuse/stacs/tapel

This databass is the full source for the Software Reuse Mepository Lab
(SoRReL) mirror of the SDNIEL20 Ada Softwars Repository and our copy
of recent deposits to the DARPA STARS project.

[save][cancel]
Figure 7: Source window for SORReL archive

Opening a source displays a window containing information concerning the nature and location of

that source, as shown in figure 7 for the Ada archive that the SoRReL group maintains. This infor-
mation includes the Internet address and service port that the server for the source listens to, as well
as unit and cost fields (as yet unused) and a textual description of the source. A single server can
support multiple sources, each separately indexed and independently accessible. A distinguished
source, maintained by Thinking Machines, acts as a directory to other sources by indexing source
definitions such as the one shown in figure 7. These source definitions are retrievable using the
same question mechanism employed for other questions. The sole distinction is in the saving of
results; saving a source definition places it in the directory containing the user’s known sources,

making it accessible for subsequent questioning.

Figure 8 shows the question window following a successful search of the SoRReL source. Us-
ers select one or more already known sources to be consulted for this question by clicking the add
source button and selecting from the resulting display of sources. The “Tell me about:” field ac-
cepts a collection of words to be used as a specification of the question. WAIS uses relevance feed-
back as its search mechanism; documents which match one or more of the words contained in the
“Tell me about:” field are added to the collection of matching documents, and then presented to the

user in the “Resulting Documents:” field ranked by a relevance metric, an indication of the fitto
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the words occurring in the query string. Relevance feedback has b=cn shown to be more effective

than boolean expression as a search mechanism for textual information (a report of one such study

appears in [6]).

Sclcctmg a result documcnt for vxcwmg 7rrct'ncves thc document from its server and dxsplays xt

in a window such as that shown in ﬁgure 9, Wthh contams a poruon of a documem describing an

Ada 1mplcmcmanon of a strcam packagc The ﬁnd key button scrolls the window and highlights

in turn cach occurrence of search words in thc documan WAIS lets users _spcmfy an arbxtrary pro-
gram on the user’ s 'ﬁ;ajcmnc as thc viewer to bc mvoked for a given class of documcnts with the
class defined using the suffix of the document’s file name (for example, xgif is typically used to

display images whose names end in ;:gif’).
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Iterative refinement of a search that results in documents viewed with the text viewer is accom-
plished by selecting a salient portion of the document and clicking the add section button. An in-
dication of the text selected is added to the “Similar to” field in the question window. Subsequent

searches then append these refinements to the primary search phrase.

3.3 — autoLib

The autoLib system, under development by Barrios Technology and NASA’s Johnson Space
Center, is a monolithic application supported by a commercial relational database system (com-
prising the meta-information) and a UNIX file system (comprising the objects themselves). The
structure of information provided by archie and WAIS is flat in the sense that there is little structure
provided other that an indexing mechanism. The autoLib system, on the other hand, supports both
a flexible single inheritance mechanism for definition of meta-information, and the definition of
heterogenous collections of objects drawn from the inheritance scheme [1]. Figure 10 shows the

main window for autoLib, including the topmost collection and its immediate sub-collections.

Clicking on an entry in the list moves the user down the hierarchy of collections to the corre-
sponding subcollection, and that collection’s subcollections are then displayed. The three buttons
at the bottom of the window allow the user to step back up one level in the collection hierarchy, to
move directly to the top of the hierarchy, or to view the objects associated with the current collec-

tion, respectively.

Figure 11 shows the object browser window, displaying the contents of one such collection.

The three columns of information include the object’s identifier, its filename, and a .short title.

The object viewer window for object 2446 appears in figure 12. AutoLib employs a commer-
cial relational database package for information storage, but the user model for autoLib is object-
oriented, defined not only as a hierarchy of class definitions, where superclass names are prefixes

of subclass names, but also as a hierarchy of collections, as mentioned earlier. AutoLib maps each
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2446 00000101.GIF PACIFIC OCEAN
4380 00000101,GIF PACIFIC OCEAN
4981 00000102.GIF PACIFIC OCEAN
2447 00000102.GIF PACIFIC OCEAN
2448 00000103.GIF PACIFIC OCEAN
4982 00000103.GIF PACIFIC OCEAN
4983 00000104.GIF PACIFIC OCEAN
2449 00000104 .GIF PACIFIC OCEAN
2450 00000105,GIF PACIFIC OCEAN
4984 00000105.GIF PACIFIC OCEAN
4985 00000106.GIF PACIFIC OCEAN
2451 00000106.GIF PACIFIC OCEARN
2452 00000107 .GIF PACIFIC OCEAN
4986 00000107 .GIF PACIFIC OCEAN
4987 00000108.GIF CHILE

2453 00000108.GIF CHILE

2454 00000109.GIF CHILE

4988 00000109.GIF CHILE

4989 00000110.GIF CHILE

2435 00000110.GIF CHILE

2456 00000111 ,GIF ARGENTINA
49390 00000111 .GIF ARGENTINA
4991 00000112.GIF ARGENTINA
2457 00000112.GIF ARGENTINA
2458 00000113.GIF ARGENTINA
4992 00000113.GIF ARGENTINA
4993 00000114.GIF ARGENTINA
24%9 00000114.GIF ARGENTINA
2460 00000115.GIF ARGENTINA
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Figure 11: autoLib object browser
not a true object-oriented database, it provides much of the flexibility and rich structural mecha-

nisms of a object-oriented database. Thérintcgraiion of objects and relations has been carried much

further in work on extensible database systcms”such as POSTGRES [8].

In addition to the collection browsing mechanism described here, autoLib supports traditional
boolean expression retrieval and a form of relevance feedback. Each object class has associated
with it a fool, which is used to view the object itself, as opposed to the metadata characterizing that
object, i.c., the fields presented in the object view window. Unlike WAIS, where tool execution
occurred on the user workstation, tool execution in autoLib occurs on the autoLib server — the user

workstation merely acts as an X-windows display.
4 — A Brief Comparison

Viewing these three systems as potential software repositories is interesting, and at the same
time somewhat unfair to their designers, as none were created with that purpose in mind. However,
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systems such as these are frequently callcdmt;) éérvice in such contekts, and the flexibility and
adaptability exhibited provides interesting concepts and features for inclusion into systems specif-

ically intended as rcpositoﬁes. Table 1 summarizes major aspects of the three systems. The popu-

Table 1: Systems Synopsis . - -
archie WAIS autoLib
architecture chieny/server client/server monolithic
# server sites ~10 ~100 1
interfaces H X-Windows, X-Windows, X-Windows
ASCI ASCIl (ASCII under development)
retrieval mechanisms || patten-matching (on | relevance feedback browsing,
name only) boolean expression,
L relevance feedback (on
i abstract only, not full text)
information domain material available by | textual information NASA flight center library
anonymous ftp materials
information stored name, word occurrence, full text / image,
location, headline, index terms,
file attributes full text meta-information
(administrator-defined)
archiving decentralized decentralized centralized
responsibility
indexing centralized decentralized centralized
responsibility
support required none moderate high
(archive) IL
support required moderate low high
(indexing)
promise as a poor limited a potential framework
repository
availability public public private

larity of archie stems not from its rich representation scheme or novel search mechanisms, but
rather from the low levels of effort required on the part of archive administrators and users to em-
ploy the system. It is an excellent example of how a limited purpose system implemented by vol-
unteers can provide a valuable resource. Referring to archie as a software rcpository, however,
stretches the definition of repository perhaps a little too far. Consideration of an artifact at a site as
a candidate component requires that the user knows both the name and the purpose of that artifact,

and the retrieval of the complete artifact (irrespective of the total size) before further consideration

can be made.
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The display facilities of WAIS alleviate the limitations of archie by presenting the user with a
flexible means of query specification (without requiring classification by the archivist) and the op-
portunity to select from a variety of candidates and view portions of them prior to retrieving the
complete text of the final selection. WAIS further increases flexibility in the nature of repositories
by supporting interrogation of multiple sources for a given query and the generation of both public
and private sources. (Note, however, that there is no technical impediment to doing this with archie
as well — the archie designers simply chose glbbil ;n?;iéxing”rather‘-t.ﬁéh regional or local indexing.)
The principle virtue of WALIS, its treatment of all material as text to be indexed, is also its principle
failing from our perspective — there is no discrimination between code, supporting documents, and

so forth — resulting in slightly more cumbersome search behavior.

The use of an administrator-defined set of collection and class definitions provides autoLib a
great deal of flexibility in organizing the information. In addition to the ability to organize the glo-
bal structure of the information base, this definitional facility supports meta-descriptions of arti-

facts, a useful feature in our chosen context.

The structuring, classification, and retrieval mechanisms of autoLib are by far the richest of the
three systems compared here. Much of this power obviously stems from the fact that autoLib is a
proprietary system, whereas archie is a volunteer effort and WALIS is a research project. However,
autoLib’s look and feel suffers dramatically in our sample context. Unlike archie and WAIS, which
use a client/server paradigm, autoLib executes solely on the server platform. In wide-area domains
like the one in which our programmer operates, this results in slow display and update of windows,
and an inability for a user to select alternative viewing tools without the intervention of the repos-

itory administrator.
5 - Conclusions

This paper reviewed three example information retrieval systems currently in use by a broad

diversity of users. I focussed on computer-supported repositories for software artifacts (i.c., com-

13



ponents, documents, test suites, executable images, etc.) rather than addressing the more broadly-

scoped notion of an information repository, which could easily encompass entities such as public

libraries.

While these systems were not explicitly designed as software repositories, they do each provide
some aspect of repository requirements. Each is a legitimate step forward in utility from early tech-
niques for wide distribution of software. This analysis leads to the following proposal for perceiv-

ing the current state of software repository efforts from the standpoint of information systems.

Generation 1 - Program Libraries
This includes not only traditional compiler libraries, but also more distributed mechanisms

such as the Ada Software Repository [2] and the various archives for news groups such as

COmp.sources.unix.

Generation 2 - Information Servers
Examples of this generation include archie, autoLib, and WAIS. The emphasis here is on the

indexing and retrieval mechanisms, rather than upon deep representation.

Generation 3 - Component Bases
Fine-grain characterization of components and interrelationships distinguishes this generation.
The nature of reuse in this generation is compositional, and is typified by the Department of

Defense STARs efforts and the Japanese Software Factory projects.

Generation 4 — Software Knowledge Bases

This generation provides deep knowledge about representation, generation, and composition

of components and design schemes and the process of software development.

My separation criteria for repository generations involves the nature and accessibility of the
knowledge of each artifact that comprises the repository. Generations one and two provide wide

access to artifacts, but little supporting infrastructure (although it might be argued that autoLib
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could through the proper configuration efforts of a repository administrator be turned into a rudi-
mentary generation 3 system). Generations three and four provide increasingly rich information
concerning the nature of the artifacts contained within them. However, with this richness comes
increasing specialization of domain, and increasing difficulty in supporting interoperability be-
tween repositories. The component base services of today and the software knowledge base servic-

es of tomorrow should not loose sight of the design goals of today’s successful information servers.
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Abstract

Software metrics provide an effective method for characterizing
software. Metrics have traditionally been composed through the def-
inition of an equation. This approach is limited by the fact that all the
interrelationships among all the parameters be fully understood.
This paper explores an alternative, neural network approach to mod-
eling metrics. Experiments performed on two widely accepted met-
rics, McCabe and Halstead, indicate that the approach is sound, thus
serving as the groundwork for further exploration into the analysis
and design of software metrics.



1 - Introduction

As software engineering matures into a true engineering discipline, there is an increasing need
for a corresponding maturity in repeatability, assessment, and measurement — of both the process-
es and the artifacts associated with software. Repeatability of artifact takes natural form in the no-

tion of software reuse, whether of code or of some other artifact resulting from a development or

maintenance process. e

Accurate ééscssmcnt of a component’s quality and reusability are critical to a successful reuse
effort. Components must be easily comprehendible, casily incorporated into new systems, and be-
have as anticipated in those new systems. Unfortunately, no consensus currently exists on how to
g0 about measuring a component’s reusability. One reason for this is our less than complete under-

standing of software reuse, yet obviously it is useful to measure something that is not completely
understood.

This paper describes a preliminary set of experiments to determine whether neural networks
can model known software metrics. If they can, then neural networks can also serve as a tool to

create new metrics. Establishing a set of measures raises questions of coverage (whether the metric

covers all features), weightings of the measures, accuracy of the measures, and applicability over

various application domains. The appeal of a neural approach lies in a neural network’s ability to
model a function without the need to have knowledge of that function, thereby providing an oppor-

tunity to provide an assessment in some form, even if it is as simple as this component is reusable,

and rhat component is not.

We begin in section 2 by describing two of the more widely accepted software metrics and then
in section 3 briefly discuss various neural network architectures and their applicability. Section 4

presents the actual experiment. We draw conclusions in section 5, and present prospects for future

work in section 6.
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2 — Software metrics

There are currently many different metrics for assessing software. Metrics may focus on lines
of code, complexity [7, 8], volume[5], or cohesion [2, 3] to name a few. Among the many metrics
(and their variants) that exist, the McCabe and Halstead metrics are probably the most widely rec-

ognized.

The McCabe metric measures the number of control paths through a program [7]. Also referred

to as cyclomatic complexity, it is defined for a program G as [8]:

v(G) = number of decision statements + 1
assuming a single entry and exit for the program, or more generally as

v(G) = Edges — Nodes + 2 - Units
where Edges, Nodes, and Units correspond respectively to the number of edges in the program
flow graph, the number of nodes in the program flow graph, and the number of units (procedures
and functions) in the program.

The Halstead metric measures a program’s volume. There are actually several equations asso-
ciated with Halstead metrics. Each of these equations is directly or indirectly derived from the fol-
lowing measures:

n; the number of unique operators within a program (operators for this experiment in-
clude decision, math, and boolean symbols);
N; the total number of operators within a program;
ny the number of unique operands in a program (including procedure names, function
names, variables (local and global), constants and data types); and
N,  the total number of operands in a program.
The measurements for a program are equal to the sum of the measurements for the individual mod-

ules.

Based on these four parameters, Halstead derived a set of equations, which include the follow-
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ing (in which we are most interested):

Actual Length: N=N; +N, .
Program Volume: V=N - logy(n) i
Program Effort: E=V/(2 np =
-
Traditionally, software metrics are generated by extracting values from a program and substi- =
tuting them into an equation. In certain instances, equations may be merged together using some hl
weighted average scheme. This approach works well for simple metrics, but as our models become i
more sophisticated, modeling metrics with equations becomes harder. The traditional process re- =
quires the developer to completely understand the x;elationship among all the variables in the pro- ‘:r
posed metric. This demand on a designer’s understanding of a problem limits metric sophistication =
(i.e., complexity). For example, one reason why it is so hard to develop reuse metrics is that no one -
completely understands “design for reuse” issues.
The goal then is to find alternative methods for generating software metrics. Modeling a metric =
using a neural network has several advantages. The developer need only to determine the endpoints -
(inputs and output) and can disregard (to an extent) the path taken. Unlike the traditional approach,
where the developer is saddled with the burden of relating terms, a neural network automatically _
creates relationships among metric terms. Traciitionalists might argue that you must fully under- — A
stand the nuances among terms, but full understanding frequently takes a long time, particularly =
when there are numerous variables involved. ﬁ
We establish neural networks as a method for modeling software metrics by showing that we -
can model two widely accepted metrics, the McCabe and the Halstead metrics. =
3 - Neural Networks _

Neural networks by their very nature support modeling. In particular, there are many applica-

tions of neural network algorithms in solving classification problems, even where the classification
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boundaries are not clearly defined and where multiple boundaries exist and we desire the best. It

seems only natural then to use a neural network in classifying software.

There were two principle criteria determining which neural network to use for this experiment.
First, we needed a supervised neural network, since for this experiment the answers are known.

Second, the network needed to be able to classify.

The back-propagation algorithm meets both of these criteria [9]. It works by calculating a par-
tial first derivative of the overall error with respect to each weight. The back-propagation ends up
taking infinitesimal steps down the gradient [4]. However, a major problem with the back-propa-
gation algorithm is that it is exceedingly slow to converge [7]. Fahlman developed the quickprop
algorithm as a way of using the higher-order derivatives in order to take advantage of the curvature
[4]. The quickprop algorithm uses second order derivatives in a fashion similar to Newton’s meth-
od. From previous experiments we found the quickprop algorithm to clearly outperform a standard

back-propagation neural network.

While an argument could be made for employing other types of neural models, due to the linear
nature of several metrics, we chose quickprop to ensure stability and continuity in our experiments

when we moved to more complex domains in future work.
4 - Modeling Metrics with Neural Networks

As mentioned earlier, the goal of the experiment is to determine whether a neural network
could be used as a tool to generate a software metric. In order to determine whether this is possible,
the first step is to determine whether a neural network can model existing metrics, in this case Mc-
Cabe and Halstead. These two were chosen not from a belief that they are particularly good mea-
sures, but rather because they are widely accepted, public domain programs exist to generate the
metric values, and the fact that the McCabe and Halstead metrics are representative of major metric

domains (complexity and volume, respectively).



Since our long term goal of the experiment is to determine whether a neural network can be
used to model software reusability metrics, Ada, with its support for reuse (generics, unconstrained
arrays, etc.) seemed a reasonable choice for our domain language. Furthermore, the ample supply
of public domain Ada software available from repositories (e.g., [1]) provides a rich testbed from

which to draw programs for analysis.

Finally, programs from several distinct application domains (e.g., abstract data types, program
editors, numeric utilities, system oriented programs, etc.) were included in the test suite to ensure

variety.

We ran three distinct experiments. The first experiment modeled the McCabe metric on sin gle
procedures, effectively fixing the unit variable at 1. The second experiment extended the first to
the full McCabe metric, including the unit count in the input vector, and using complete packages

as test data. The third experiment used the same test data in modeling the Halstead metric, but a

different set of training vectors.

" 4.1 - Experiment A: A Neural McCPbe metric for Procedures

In this experiment all vectors had a unit value of one, so the unit column was omitted. In build-
ing both the training and test sets all dupiicate vectors and stub vectors (i.e., statements of the form
“PROCEDURE XYZ IS SEPARATE”) were removed. The input for all trials in this experiment
contained 26 training vectors and 8 test vectors (the sets were disjoint). Each training vector cor-
responded to an Ada procedure and qongaincd three numbers, the number of edges, the number of

nodes, and the cyclomatic complexity value.

The goals of this first experiment were to establish whether a neural network can be used to
model a very simple metric function (the McCabe metric on a procedure basis) and to examine the
influence neural network architecture has on the results. The input ran under 6 different architec-

tures: 2-1 (two input layers, no hidden layers, and one output layer), 2-1-1 (two input layers, one
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Figure 1: McCabe Results for Single Procedures

hidden layer, and 6nc output layer), 2-2-1,2-3-1, 2-4-1, and 2-2-2-1. In order to examinc the impact
of architecture, other parameters remained constant. Alpha, the leaming rate, wa$ set to 0.55
throughout the trials. An asymsigmoid squashing function (with a range of 0 to +1) was used to
measure error. Finally, each trial was examined during epochs 1000, 5000, and 25,000. Figure 1
presents the results of these trials. In the graph, the neural calculated values are plotted against the
actual values for the metric at 25,000 epochs'. In an ideal situation, all lines would converge to x
=y, indicating an exact match between the actual McCabe metric (calculated using the traditional

equation) on the x-axis, and the neural calculated McCabe metric on the y-axis.

This experiment provides good results considering the minimal architectures used. Most points
tend to cluster towards the actual-calculated line regardless of architecture selection. This suggests

that more complex architectures would not provide dramatic improvements in the results.

Considering that only 26 training vectors were used, the results were quite favorable, and we

moved on to the next experiment.

* In fact, all figures in the paper correspond to the results following 25,000 epochs.
6



4.2 - Experiment B: A Neural McCabe Metric for Packages

The second experiment modeled the McCabe metrics on a package body basis. Changes in data

involved the addition of another input column corresponding to the number of units (the number
of procedures in an Ada package) and the selection of a slightly different set of training vectors,

chosen to ensure coverage of the added input dimension.

The experiment ranged over five different architectures (3-3-1, 3-5-1, 3-10-1, 3-5-5-1, and
3+5-5-1 (hidden layers are connected to all previous layers)) and four training sets (16, 32,48, and
64 vectors). Each smaller training set is a subset of the larger training set, and training and test sets
were always disjoint. Alpha remained constant at 0.55 throughout the trials. Once again, we used

an asymsigmoid squashing function in every trial. Data was gathered at epochs 1000, 5000, and
25,000.

We selected vectors for the test suite to ensure variety both in the number of units in the pro-
gram and in the nature of the program (number crunching programs tend to provide higher cyclo-
matic complexity values than I/O-bound programs). For a given package body, its cyclomatic

complexity is equal to the sum of the cyclomatic complexities for all its procedures.

Some packages contained stub procedures. These stub procedures generate an edge value of

zero and a node value of one and thus produce a cyclomatic complexity of 1. Stub procedures did

not seem to adversely affect the training set.

The four figures below depict the results first when neural network architectures remain con-
stant and training set size varies and second when training set size remains constant and neural net-

work architectures vary.

As the training set increases, the results converge towards the x = y line, indicating a strong
correspondence to the actual McCabe metric. This behavior occurs in all architectures; we show

the 3-3-1 architecture in Figure 2, and the 3+5-5-1 architecture in Figure 3. Except for the initial
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Figure 3: The 3+5-5-1 Architecture
improvement after 16 vectors, there is no significant improvement of results in the other three tri-

als. This suggests that relatively low numbers of training vectors are required for good perfor-

mance.

Furthermore, as shown in Figure 4 for 16 training vectors and Figure 5 for 64 training vectors,
network architecture had virtually no effect on the results. These strong results are not surprising,

given the linear nature of the McCabe metric.
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4.3 - Experlment C A Neural Halstead Metrlc for Packages

Based upon the results of the first two experiments, we assumed for this experiment that if the
expenmcnt workcd for packages, then it also woglfgg for r procedures, and further, that the increas-

ing the numbcr of txmmng set vectors improvcs upon the results. Therefore, the focus of this ex-

periment was on varying neural network architectures over a fixed-size training set.
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Figure 7: Volume Results, Deep Architectures
The experiment ranged over seven different ncural nctwork architectures brokcn mto three

groups: broad, shallow archltecturcs (4-5 3 4—7 3, and 4-10-3), narrow, decp architectures (4-7-7-

3 and 4-7-7-7-3), and narrow, dccp archltectures w1th hlddcn layers that connectcd to all previous
layers (4+7-7-3 and 4+7+7-7-3). We formed these three groups in order to discover whether there

was any connection between the complexity of an architecture and its ability to model a metric.

Figures 6, 7, and 8 present the results for the Halstead volume for broad, deep, and connected
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Figure 8: Volume Results, Connected Architectures

architectures, respectively. Note that both the broad and deep architectures do moderately well at
matching the actual Halstead volume metric, but the connected architecture performs significantly
better. Furthermore, there is no significant advantage for a five versus four layer connected archi-

tecture, indicating that connecting multiple layers may be a sufficient condition for adequately

modeling the metric.

This pattern of pcrformance also held for thc Halstead length metric and the Halstead effort

metric, so we show only the results for the connected architecture in Figure 9 and Figure 10, re-

spectively.

5 - Conclusions

Thc cxpcnmc rit ntal -fcsults clrcarly'ind_icatc that a ncﬁﬂ nctwoﬂc appméch for modeling metrics

is fca51blc In all cxpcnments thc results corresponded well with the actual values ‘calculated by

lradmonal mcthods Both the data set and the neural network archxtccturc reached pcrformance sat-

" urafion points in the McCabe metric. In the Halstead cxperlmcnt, thc fact that thc results oscﬂlatcd

over the aétual-calculatcd line 1nd1catc that thc ncural network was attempting to model the desired

values. Adding more training vectors, especially ones containing larger values, would smooth out
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6 — Future work

Applying this work to other existing metrics is an obvious extension, but we feel that the de-
velopment of new metrics by applying neural approaches is much more significant. In particular,

expanding this work to the development of a reusability metric offers great promise. Effective re-

12



use is only possible with effective assessment and classification. Since no easy algorithmic solu-
tions currently exist, we’ve turned to neural networks to support the derivation of reusability
metrics. Unsupervised learmning provides interesting possibilities for this domain, letting the algo-

rithm create its own clusters and avoiding the need for significant human intervention.

Coverage and accuracy are important aspects of developing a neural network to model a soft-
ware reuse metric. McCabe and Halstead métn'cs are interesting and useful, but they do not provide
coverage regarding reusability. We need to expand the number of parameters in the data set in or-
der to provide adequate coverage with respect to reusability of a component. We also would like
to improve the accuracy of answers by enlarging our data sets to include possibly hundreds of train-
ing set vectors. This will need to be a requirement when explorin g more complex metric scenarios,

and the cost of such extended training is easily borne over the expected usage of the metric.

Finally, it is possible to explore alternative neural network models. For example, the cascade

correlation model [S] dynamically builds the neural network architecture, automating much of the

process described here.
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Abstract
For a component industry to be successful, we must move be-

yond the current téchniqiies of black box reuse and genericity to a
more flexible framework supporting customization of components
as well as instantiation and composition of components. Customiza-
tion of components strikes a balance between creating dozens of
variations of a basecomponentand requiring the overhead of unnec-
essary features of an “everything but the kitchen sink” component.
We argue that design and instantiation of reusable components have
competing criteria — design-for-reuse strives for generality, design-
with-reuse strives for specificity — and that providing mechanisms
for each can be complementary rather than antagonistic. In particu-

lar, we demonstrate how program slicing techniques can be applied
to customization of reusable components.
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1 - Introduction

The impediments to a successful reuse infrastructure in the software engineering community
have typically been separated into social and technological issues [26]. Furthermore, the social is-
sues (e.g., comprehension, trust, and investiture) often are characterized as being the more critical,
as there is a perception that all of the technical issues (e.g., environments, repositories, and linguis-
tic support) have been solved [27]. We do not agree with this assessment (see [8] for our arguments
regarding repositories and environments), and furthermore believe that appropriate application of

technology can alleviate certain of the social issues just mentioned.

This paper addresses two reuse impediments — component comprehension by a reuser [14] and
the fitness of a component for a given application — and how technical support, in this case lan-
guage features and program slicing, alleviate these impediments. These two impediments drive the
consumer side of reuse repository design, for without comprehensibility users will not select arti-
facts from the repository, and without adequate conformance to requirements users will not incor-
porate artifacts into systems even if they do select them. These two impediments also drive the
design process for reusable components, since components perceived as ill-suited for reusers’ ap-
plication domains (and hence not incorporated into the resulting systems) have not met the require-

ments of a design-for-reuse effort.

We begin in section 2 by characterizing the inherent conflict between the design goals for de-
sign-for-reuse and design-with-reuse. We then review mechanisms that support particular structur-
al and behavioral aspects of component design in section 3. The mechanisms described support
flexibility in the design of a component. We consider mechanisms in section 4 to constrain an im-
plementation, supporting specificity in the instantiation of a component, and show in section 5 how
to employ program slicing as one such mechanism. Section 6 demonstrates the application of our

technique to a moderate-sized example.
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2 - Design-For-Reuse versus Design-With-Reuse

Design for reuse focuses on the potential reusability of the artifacts of a design process. Design
with reuse, on the other hand, focuses on employing existing artifacts wherever possible in the de-
sign process. The intent of the two approaches, and hence the various criteria that each of them em-
ploy, is then quite distinct. In particular, design for reuse strives for generality, even to the point of
additional cost to the current project, and design with reuse strives to reduce cost to the current
project, even to the point of adapting non-critical project requirements to achieve conformance

with existing artifacts.

Gamnett and Mariani proposed the following attributes for reusable software [10]:
+ environmental independence — no dependence on the original development environfent;
» high cohesion — implementing a single operation or a set of related operations;
» loose coupiing — minimal links to other components;
+ adaptability — easy customization to a variety of situations;
* understandability;
+ reliability; and
+ portability.
These attributes clearly reflect goals that should apply to all products of a design-for-reuse effort,
and some of these attributes (pa:ﬁgula{{): understandability and reliability) apply to all software de-
E velopment cfforts Nét sorcle;r is whether ﬁxcsc attributés reflect the goals of design-with-reuse

efforts.

We contend that there is an inherent conflict between design-for-reuse and design-with-reuse
that centers upon adaptability. Design-for-reuse strives to create artifacts that are as generally ap-
 plicable as possible, in the worst case creating “everything-but-the-kitchen-sink” artifacts, loading
a component with features in an effort to ensure applicability in all situations. Design-with-reuse

strives to identify that artifact which most specifically matches a given requirement. Anything less

Balancing Generality and Specificity 2 4/30/92
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requires additional effort, both in comprehension and coding. Anything more carries with it the

penalty of excess resource consumption and increased comprehension effort.

The specificity that we scck'in design-with-reuse takes two forms — the first is that of avoiding
additional functionality in a simple component; the second is that of avoiding additional function-
ality in an abstraction, implemented as a package/module. Specificity becomes increasingly critical
when considering scale. The additional storage consumed and increased comprehension effort
posed by a simple abstract data type quickly become the multi-megabyte “hello world” applica-

tions of today's user interface management systems, and threaten intractability in the domain of

megaprogramming [4, 19].

3 - Language Mechanisms Supporting Design-For-Reuse

Designing a software component for reuse involves a number of issues, including analysis of the
intended target domain {21, 22], the coverage that this component should provide for the domain
[22], and the nature and level of parameterization of the component [7, 28, 29]. A number of de-
velopments in programming language design directly bear upon these issues. We focus here upon

those we see as most beneficial.
3.1 - Procedural and Modular Abstraction

The obvious advantages that functions and procedures provide in comprehension and reuse of
portions of a program (even if the reuse is only at a different location in the same program) are so
well recognized, that no contemporary language proposal is taken seriously without them. The
package (or module) concept, with separate specification and implementation of a collection of
data and procedural definitions, has arguably reached the same level of acceptance. Sommerville’s
list of classes of reusable components (functions, procedures, declaration packages, objects, ab-
stract data types, and subsystems) [25] indicates the depth of this acceptance — virtually every class
listed is directly implementable using one of the two mechanisms (objects being the only non-ob-

vious fit).

Balancing Generality and Specificity 3 4/30/92



3.2 - Parameterization and Genericity

The utility of a functiqp or procedure is severely limited without the ability to provide infor-
mation customizing the effect of a specific invocation. Parameters comprise the explicit contract
between a function and its invocations, and are generally accepted as far preferable to the implicit
contract provided by shared globarlﬂstaftc. Genericity, or more formélly, parametric ﬁolymorphism
[6], involves the parameterization of program units (both functions/procedures and packages/mod-
ules) with types, variables, and operations (functions, procedures, tasks, and exceptions). Parame-
ters effectively support farhilics of invocations. Genericity extends this support to families of
instantiations, each with its own family of invocations, providing ihcreasféd'édfziptability and port-

ability [28].

3.3 - Inheritance

Inheritance invbi\;cs thccrcanonof generalization/specialization structures, a tree in the case
of single inheritance, a lattice in the case of multiple inheritance. These generalizations/specializa-
tions may be structural (in the case of subtypes [6]) or behavioral (in the case of classes [11]).
Whatever the structuring mechanism, inheritance supports the creation of vaﬁations of a base com-
ponent, each with its own interface [15], as well as instances of those variations. Inheritance thus
is a very useful mechanism for the creation of certain classes of softWare artifacts. Note, however,
that using inheritance as a reuse-enabling mechanism is not without its own hazards, most notably
scalability and the violation of information hiding [23, 24].

4 - Language Mechanisms Supporting Design-With-Reuse

The previous section primarily addressed the creation of program structure. Our primary inter-
est in this section involves not the creation of new reusable components, but rather their natural
involvement in the development process. This corresponds to the responsibilities of Basili’s project

orgar;ization (3].
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4.1 - Procedural and Modular Abstraction

Much of today’s reuse takes placc at the level of procedures and packages, either as source or
object code. The linguistic and c'nvironmental mechanisms for this, including source and object li-
braries and separate compilation, provide little over what a simple text editor with cut and paste
commands provides. The onus of comprehension and adaptation is placed upon the reuser, partic-
ularly if the reuser is interested in increasirngr Ehc ,SWiﬁCiW of the component (which may even be
proscribed by the social infrastructure, i.c. management). The consequence of design-with-reuse in

this context is thus monolithic reuse, an all or nothing acceptance of an entire component.
4.2 - Genericity

Genericity readily supports the creation of specializations of the generic artifact through instan-
tiation. However, genericity as defined in languages such as Ada provides little beyond complete
instantiation of a generic component into a completely concrete instance. Further, partial instanti-
ation does little in terms of additional flexibility, as every successive partial instantiation makes
the resulting generic more concrete. Hence genericity provides the same form of monolithic reuse

as that described in the previous section, with the option of customizing the instances.
4.3 - Inheritance

Inheritance performs as readily in support of a reuser as in support of a developer of compo-
nents. The reuser can both instantiate new instances of the component and derive new component
classes from the original. This second issue is a particularly beneficial one, as it allows for the de-
velopment of unanticipated refinements to the program model without requiring adaptation of ex-
isting code. However, inheritance exhibits the same specificity limitations as abstraction and
genericity, supporting only monolithic reuse, in the case of instantiation, or incremental monolithic

reuse, in the case of class refinement.
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S — Program Slicing

The mechanisms dxscussed in sections 3 and 4 add structure and,/or complexxty toa program

Paramctcnzanon and gencncrty mcrcasc the mterfacc complcxrty of a program unit. Packages and
inheritance increase either the number of program units or the structural complexity of those units.
Hence, current languages do not have explicit mechanisms that address the conflicting goals of de-
sign-for-reuse and design-with-reuse. We therefore propose a new mechanism for reconciling the
two approaches (by increésrirrgﬁcéirrxponcnt structural sbeciﬁcﬁy) which works in r:onjunction with
the facilities provided in Ada — a new form of program slicing. We use Ada for our examples, as it
is a language whose built-in features facilitate the types of transformations which we invoke. How-

ever, the concepts we present are not confined to any particular language.

7 In his thesis [30], Weiser introduced the concept of program slicing. In this form of slicing,
called static slicing, a slice of a program is an executable subset of the source statements which
make up program. A slice is specified by a variable and a statement number, and consists of all
statements which contribute to the value of that variable at the end of execution of that statement,

together with any statements needed to form a properly executing wrapper around the slice proper.

Dynamic slicing, [1, 2, 17] is a second form of slicing which is determined at runtime and is

dependent on input data. A dynarmc slice is the trace of all statements executed during a program

‘run usmg a parucular mput data set, refined by spcc1fymg only those executed statements which
refcrencc a speaﬁed set of vanablcs Dynarmc shcmg was specrﬁcally de31gncd as an aid in de-

buggmg, and is used to hclp in thc search for offendmg statements in ﬁndmg a program CITOr.

By definition, static slicing is a pre-compilation operation, while dynamic slicing is a run-time
analysis. Our interface slicing belongs in the category of static slicing, as it is a data-independent
pre-compilation code transformation. Since our interest here is only with static slices, henceforth

we will use slicing to mean static slicing, and we will not again discuss dynamic slicing.

Balancing Generality and Specificity 6 4/30/92
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1 procedure wc (theFile : in string; nl, nw, nc : out natural := 0) is
2 inword : boolean := FALSE;

3 theCharacter : character;

4 file : file_type;

5 begin a

6 open{file, IN_FILE, theFile);

7 while not end_of_file(file) loop
8 get(file, theCharacter);

9 nc := nc + 1;

10 if theCharacter = LF then

11 nl = nl + 1;

12 end if;

13 if theCharacter = ' '/

14 or theCharacter = LF =
15 or theCharacter = HT then
16 inWord = FALSE;

17 else if not inWord then

18 inWord = TRUE;

19 nw = nw + 1;

20 end if;

21 end loop:;

22 close(file);

23 end wc;

Figure 1: wc, a procedure to count text
5.1 - Previous Work in Slicing

In his thesis {30] and subsequent work [31, 32, 33], Weiser used slicing to address various is-
sues primarily concerned with program semantics and parallelism. Gallagher and Lyle more re-
cently employed a variation of slicing in limiting the scope of tcsting requu‘eddunng program

maintenance [20].

Program slicing has been proposed for such uses as debugging and program comprehension
(32}, parallelization [S], merging [12, 18], maintbnancc, and repository module generation [9].

As an example of program slicing, we present the following example, adapted from Gallagher
& Lyle [9]. The procedure wc, presented in Figure 1, computes the count of lines, words, and char-
acters in a file.” Figure 2 gives the results of slicing wc on the variable nc at the last line of the
procedure. Since the variables nl, nw, and inword do not contribute to the value of nc, they do

not appear in the slice. Also, the statements on lines 10 through 20 of the original procedure do not

* This procedure is not entirely correct, since the Ada get procedure skips over line terminators, unlike the C
getchar function. We adapted wc in this way to clarify its actions and retain the flavor of the original function.

Balancing Generality and Specificity 7 4/30/92



procedure wc (theFile : in string; nc : out natural := 0) is
theCharacter : character;
file : file_type;
begin . .
open{file,  IN_FILE, theFile);
while not end_of_file(file) loop
get(file, theCharacter);
nc := nc + 1;
end loop;
close(file);
end wg¢;

H oW NN & W

T

Figure 2: wc sliced on nc
appear in the slice. While this slice follows the spirit of a classic slice, and will serve to illustrate

classic slicing, it also differs in several important ways, as described below.

5.2 - Interface Slicing

We propose a new form of slicing, interface slicing, which is performed not on a program but
on a component. Similar to previous work in static slicing, our interface slice consists of a compil-

ablc subsct of thc statements of thc ongmal program. Thc mtcrfacc slxcc is dcﬁncd such that the

bchavxor of the statcmcnts and the valucs of the vanablcs in thc shcc is 1dcnt1cal to their behavior

and values in the original program.

However, while previous slicing efforts have attempted to isolate the behavior of a set of vari-
ables, even across procedural boundaries, our slice seeks rather to isolate portions of a component

whxch export thc behavwr we dcsxre In dle following discussion, we assume for simplicity that a

package unplcmcnts a single ADT, and we use packagc and ADT mtcrchangcably

Unlikc standafd shcmg tcchﬁiths which are usually applied to an cntirc progmm interface

slicing is done on a fragment of a program a component since our goal is to cmploy the neces-

sary ‘and sufficient scmantlcs ofa componcnt for use in thc targct systcm. Intcrface shcmg isat thc

fevel of procedurcs,

ncuons, and task types.Ifa procedurc is mvoked at all thc entire proccdure

must bc mcluded as we havc no way of knowmg a pnon what poruon of the procedure will be

needcd. Howcvcr, 1f an ADT is mcorporated into a system, not necessarily all of its operations are

Balancing Generality and Specificity 8 4/30/92
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invoked. The interface slicing process determines which operations are to be included, and which
can be eliminated. Because interface slicing treats procedures atomically, the complex program de-
pendence graph analysis of standard slicing [13] is not necessary. A single pass of the call graph

of an ADT’s operations is sufficient to determine the slice. We use “operation” as a general term

to encompass procedures, functions, and exceptions, and include tasks with procedures in that a

task is another way of encapsulating a subprogram unit.

We will illustrate the concept of interface slicing first by examining a simple example, a toggle
ADT. First consider package togglel, in Figure 3. This package exports the public operations
on, of f, set, and reset. On and of f are examination operations which query the state of the
toggle, while set and reset are operations which modify the state of the toggle. Now suppose
that we wish to have a toggle in a program which we are writing, but we have a need for only three
of the four operations, namely on, set, and reset. In standard Ada, we have two choices. We
can include the package as is, and have the wasted space of the off operation included in our pro-
gram. This is the kitchen sink syndrome. Alternatively, we can edit the source code manually (as-
suming we have access to it) and remove the of £ operation, thereby saving space, but requiring a
large amount of code comprehension and introducing the danger of bugs due to hidden linkages
and dependencies. In both these cases, we sec,thc generality of design-for-reuse competing with

the desired specificity of design-with-reuse.

Instead, we propose the invocation of an interface slicing tool to which we give the togglel
package together with the list of operations we wish to include in our program. The tool then au-
tomatically slices the entire package based on the call graph of its operations, generating a slice
containing only those operations (and local variables) needed for our desired operations. The slice
of togglel which contains only the three operations is shown in Figure 4.

* In other words, an interface slice is orthogonal to a standard static slice. The use of one
technique neither requires nor inhibits the use of the other. We are not discussing the tech-
nique of standard static slicing here, other than to contrast it with our interface slice, and so
we do not assume that an interprocedural slicer is operating at the same time as our interface
slicer.

Balancing Generality and Specificity 9 4/30/92



1 package togglel is
2
3 function on return boolean;
4 .
5 function off return boolean;
6
7 procedure set;
8
9 procedure reset;
10
11 end togglel;
12
13 package body teogglel is
14
15 theValue : boolean := FALSE;
16
17 function on return boolean is
18 begin
1% return theValue = TRUE;
20 end on;
21
22 function off return boolean is
23 begin
24 return theValue = FALSE;
25 end off;
26
27 procedure set is
28 begin
29 theValue := TRUE;
30 end set;
31
32 procedure reset is
33 begin
34 theValue := FALSE;
35 end reset;
36

37 end togglel;
Figure 3: A toggle package

As another example, consider the packagc t:oggle2 wh1ch in addmon to the operatmns of

togglcl includes the operation swap This packagc is shown in Flgure 5. Suppose we w1sh to write
a program which needs a toggle ADT and the operatibns on and swap. The interface slicing tool
finds that the operation on has no dcpcndencws, but the opcranon swap needs on, set, and re-

set, and so the desired slice of togglc2 ‘which is p produced for our program is contains the four

operations, on, set, reset, and swap, and does not contain of £, This slice is shown in Figure 6.

Onc of thc dlfferences between mtcrfacc shccs and standard shccs is thc way that mtcrfacc slic-

es are dcﬁned. Whﬂc a standard shcc is dcfined by a shcmg criterion consrstmg of a program, a

statement and a set of variables, an interface slice is defined by a package and a set of operations

Balancing Generality and Specificity 10 4/30/92
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1 package togglel is

2

3 function on return boolean;
4

5 procedure set; -

6

7 procedure reset;

8

9 end togglel;

10

11 package body togglel is

12

13 theValue : boolean := FALSE;
14

15 function on return boolean is
16 begin

17 return thevValue = TRUE;
18 end on;

19

20 procedure set is

21 begin

22 theValue := TRUE;

23 end set;

24

25 procedure reset is

26 begin

27 theValue := FALSE;

28 end reset;

29

30 end togglel;

Figure 4: The toggle package sliced by on, set and reset

in its interface. The package is an example of design-for-reuse and implements a full ADT, com-
plete with every operation needed to legally set and query all possible states of the ADT. The in-
terface slicer is an aid to design-with-reuse and prunes the full ADT down to the minimal set of
operations necessary to the task at hand. The interface slicer does not add functionality to the ADT,
as the ADT contains full functionality to start with. Rather, the slicer eliminates unneeded func-
tionality, resulting in a smaller, less complex source file for both compiler and reuser to deal with,

and smaller object files following compilation.
6 — An Extended Example

The examples above illustrate the general concept ofmtcrfacc slicing, but leave out some im-
portant details. To fill in some of these details, we will next examine a pair of generic packages in

the public domain. These packages were explicitly written to be used as building blocks for Ada
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package toggle2 is
function on return boolean;
function off return boolean;
procedure set;
procedure reset;

procedure swap;

package body toggle2 is
theValue : boolean := FALSE;

1
2
3
4
5
6
7
8
9
10
11
12
13 end toggle2;
14
15
16
17
18
19 function on return boolean is
20

begin
21 return thevValue = TRUE:
22 end on;
23
24 function off return boolean is
25 begin
26 return theValue = FALSE;
27 end off;
28
25 procedure set is
30 begin
31 theValue := TRUE;
32 end set;
33
34 procedure reset is
35 begin
36 theValue := FALSE;
37 end reset;
38
39 procedure swap is
40 begin
41 if on then
42 reset;
43 else
44 set;
45 end if;
46 end swap:;
47

48 end toggle2; e S R

Figure 5: Version 2 of the toggle package

programs. The first is a generic package which provides the ADT ser. The packagc is mstantlated
by supplymg it w1th two parameters, thc ﬁrst bcmg thc type of element which the set is to contain,
and the sccond a companson function to determine thc equality of two mcmbcrs of this typc The

packagc prov1des all the opcranons necessary to create mampulatc qucry, and destroy sets. The

full mtcrface specxﬁcatlon of the set 1s glven in Appcndlx A

Balancing Generality and Specificity 12 4/30/92
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1 package toggle2 is

2

3 function on return boolean;
4

S procedure swaps;:

6

7 end toggle2;

8

9 package body toggle2 is

10

11 theValue : boolean := FALSE;
12

13 function on return boolean is
14 begin

15 return theValue = TRUE;
16 end on;

17

18 procedure set is

19 begin

20 theValue := TRUE;

21 end set;

22

23 procedure reset is

24 begin

25 theValue := FALSE;

26 end reset;

27

28 procedure swap is

29 begin

30 if on then

31 reset;

32 else

33 set;

34 end if;

35 end swap;

36

37 end togglel;

Figure 6: Version 2 of toggle sliced by on and swap

This set package happens to use a /ist as the underlying representation upon which it builds the
set ADT, and so requires the second generic package which supplies the list ADT. This happens to
be a singly-linked list implementation which exports all the operations necessary to create, manip-
ulate, query, and destroy lists. This package also requires two generic parameters, the same ones

which set requires. The specification for the list package is given in Appendix B.

In the particular list and set packages we used for our example, there were no private opera-
tions. Private operations are not available to be used in an interface slicing criterion; only the ex-
ported operations in the interface can be in the slicing criterion. In general, however, private

operations are treated identically to exported ones during the slicing process. The slicer, being a

Balancing Generality and Specificity 13 4/30/92
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Figure 7: The call graph for set

B E EE R
Figure 8: The sliced set

privileged pre-compilation code transformer, does not respect privacy.

6.1 - A Single Level of Slicing

Now suppose we wish to use the set package in a program we are writing, but we have a need
for only a few of the set operations, specifically, in this example, create, insert, and equal. We
would like to include all the code necessary to accomplish these operations, but would like to have

only the necessary code, and no more.

In order to slice the set package, we must examine the call graph of operations in the set pack-
age for the transitive closure of the three desired operations. Figure 7 shows the complete call graph
of the set package, and figure 8, shows the transitive closure of create, insert, and equal (nodes s2,
54 and s8, respc:ctively).'k Figure 8 shows the slice corresponding to these three operations. Out of
the total of 14 bbcfétions exported by the origiqglv package, the slice based on create, insert, and
equal coﬁtams only80pcrat10ns w1th a con51dcr;blc ?eduction in totai size of codé, although the

complexity of thc call graph remains the same.

Notice that in this example, the sliced set package needs the same number and type of generic
parameters as did the original package. This will not always be the case, however. In Figure 1, the

* The call gi'aph node lal;elscorrespond to the éorﬁiﬁéhts associated with each operation for
the package specifications appearing in the appendices.
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Figure 9: The combined set and list call graph

original wc procedure needed 4 parameters, but the slice based on nc shown in Figure 2 needed
only 2 parameters. In general, out of all the local variables in a component, including both variables
bound to parameters and those declared within the component’s scope, a slice will include a subset

of these local variables.
6.2 - A Second Level of Slicing

While the 8 operations represent an improvement over the original 14, we can go further, and
examine not only the set package, but also the list package as well. If we examine the transitive
closure of the three desired operations in the call graph of all the operations of both the set and list
packages, we can accomplish a much more dramatic improvement in the size and compléxity of
the resulting slice. Figure 9 shows the full call graph of the set and list packages. In standard Ada
usage, all of this would be included in a program were the generic set and list packages instantiated
in a program. Figure 10 shows the call graph which is exactly the transitive closure of the set op-
erations create, insert, and equal, as would be produced by interface slicing. The size and complex-
ity of this call graph are obviously much less than that of the full graph. Table 1 gives some
statistics on the relative sizes of the packages and their call graphs. |

None of the examples above involved overloaded names. Interface slicing in the presence of

overloading is somewhat more complicated. Assuming that the resolution can be accomplished

Balancing Generality and Specificity 15 4/30/92
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Fiéuré 10: The shced set and list

Table 1: Package Statistics

# of nodes # of edges stattn(iints
Full Set T 5 >
Sliced Set 8 5 >
% reduction 36 0 ©
Full Set and List 37 46 45
Sliced Set and list 20 19 20
% reduction 46 % b

completely at comﬁilé time, there are two options. The first is a simple, naive approach in which
all versions of an ovcrloaded opcra!Jon are mcluded The second is to perform the type checking
for parameters and retum value (if any) to determine which of the overloaded versions are actually

' called. For cxa.mplc, assumc t.hat hst s opcrauon attachisa quadruply overloaded procedurc which

can bc called with two clcmcnts anelementand a hst a hst and an element, or two lists. Resolution
of the overloading may, in a particular situation, allow three of the four procedures to be sliced

away, resulting in improved reduction of size and complexity. -

If the overloading cannot be resolved at compile time, but must wait until runtime, we have no
option but to include the code for all possible operations which may be called. A static slice can

only blindly assume worst-case in the presence of run-time binding of overloaded procedure
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names. Although our example extends to only two levels, the slicing can extend to as many levels

as exist in the compilation dependency graph of the packages included in the program.
7 — Conclusion: Balancing Genericity and Specificity

We have discussed two main reuse-oriented paradigms in software engineering, namely de-
sign-for-reuse and design-with-reuse, and how the goals of these two paradigms have in the past
been viewed as being antagonistic, with the former striving for generality and the latter striving for
specificity. We have shown that with the proper language mechanisms and development tech-
niques, the goals are in fact complementary. The specific mechanism we use by way of example is
a new form of static program slicing which we call interface slicing. Using interface slicing, a com-
plete and generic component can be adapted to the specific needs of the program at hand, increas-
ing comprehension and reducing complexity, without sacrificing the generality of the base
component. Thus a developer designing a component for reuse can be completely unfettered of all
size constraints and strive for total generality, knowing that a reuser of the components can effort-

lessly have all unneeded functionality sliced away in a pre-compilation step.

The artifacts produced by an interface slicer should not be considered as new components, any
more than instantiations of a generic are viewed as new components. Rather, we want to emphasize
the retention of the derivation specification, avoiding additional maintenance problems though the
life-cycle of what would then be custom components. We should keep the desired interface speci-
fication, and alter that when we need to change the way in which we bind through the interface to
the base component. Just as we don’t associate any cost per se with the instantiation of a generic,
we should not associate a cost with specialization through interface slicing, since it can be com-

pletely handled by the development environment.

Our approach addresses indirectly a critical social aspect of reuse, the trust that reusers place
in the components extracted from the repository [16]. Deriving a family of interface slices from a
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base component implies that if the base component is correct (or at least certified), then all of the
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slices must necessarily be correct (or at least certified) also.
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Appendix A - The Package Specification for Set

8,9, and 10.

1 generic

2 type elemType is private; :

3 with function equal(el, e2: elemType) return boolean is *=";

4 package setPkg is

2 type set is private;

7 type iterator is private;

g noMore: exception; -
%g function create return set; -
ig procedure delete(s: in out set; e: in elemType); -
ig procedure insert(s: in out set; e: in elemType); -
ig function intersection(sl, s2: set) return set; ’ -
ig function union(sl, s2: set) return sgt;‘ 7 g -
gg function copy(s: set) return set; ) -
gg function equal(sl, s2: set) return boolean; -
gg function isEmpty(s: set) thu;nﬁboolegn; ) -—
gs function isMember(s: set; e: elémTyééf return boolean; --
gg function size(s: set) return natural; --
gg function makelterator(s: set) return iterator; --
gg procedure next(iter: in out iterator; e: out elemType); --
gé function more(iter: iterator) return boolean; --

37 end setPkg:

‘sl

s2
s3
s4
sS
s6
s7
s8
s9
sl1l0
sl1
s12
s13

sl4

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 7,
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Appendix B - The Package Specification for List

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 9

and 10.

1 generic

2 type elemType is private;

3 with function equal(el, e2: elemType) return boolean is “=7;

4 package listPkg is

2 type list is private;

7 type iterator is private;

g circularlist: exception; -- 11
10 emptyList: exception; -- 12
11 itemNotPresent: exception; -- 13
12 noMore: exception; -- 14
12 procedure attach(ll: in out list; 12 in list); _ -- 15
12 function copy(l: list) return list; -- 16
ig function create return list; -- 17
ég procedure deleteHead(l: in out list}); -- 18
g% procedure deleteltem(l: in out list; e: in itemType); -- 19
%i procedure deleteltems(l: in out list; e: in itemType); -- 110
gg function equal(ll, 12: list) return boolean; -- 111
gg function firstValue(l: list)} return itemType; -- 112
%g function isInList(l: list; e: itemType) return boolean; -- 113
gé function isEmpty(l: list) return boolean; -- 114
gi function lastValue(l: list) return itemType; -- 115
32 function length(l: list) return integer; -- 116
gg function makelterator(l: list) return iterator; -- 117
ig function more{l: iterator) return boolean; -- 118
2% procedure next(iter: in out iterator; e: itemType); -- 119
22 procedure replaceHead(l: in out list; e: itemType); -- 120
:2 procedure replaceTail(l: in out list; newTail: in list); -- 121
ig function tail(l: list) return list; -- 122
§§ function last(1l: list) return list; -- 123

52 end listPkg;
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